31 research outputs found

    Temperature- and pressure-dependent structural study of {Fe(pmd) 2[Ag(CN)2 ]2}n spin-crossover compound by neutron Laue diffraction

    Get PDF
    The effect of pressure (up to 0.17 GPa) on the spin-crossover compound {Fe(pmd)2[Ag(CN)2]2}n [orthorhombic isomer (II), pmd = pyrimidine] has been investigated by temperature- and pressure-dependent neutron Laue diffraction and magnetometry. The cooperative high-spin ¿ low-spin transition, centred at ca 180 K at ambient pressure, is shifted to higher temperatures as pressure is applied, showing a moderate sensitivity of the compound to pressure, since the spin transition is displaced by ca 140 K GPa-1. The space-group symmetry (orthorhombic Pccn) remains unchanged over the pressure–temperature (P–T) range studied. The main structural consequence of the high-spin to low-spin transition is the contraction of the distorted octahedral [FeN6] chromophores, being more marked in the axial positions (occupied by the pmd units), than in the equatorial positions (occupied by four [Ag(CN)2]- bridging ligands)

    Synthesis, crystal structure, and magnetic characterization of the three-dimensional compound [Co2(cbut)(H2O) 3]n (H4cbut = 1,2,3,4- cyclobutanetetracarboxylic acid)

    No full text
    A novel cobalt(II) complex of formula [Co2(cbut)(H 2O)3]n (1) (H4cbut = 1,2,3,4-cyclobutanetetracarboxylic acid) has been synthesized under hydrothermal conditions and its crystal structure has been determined by means of synchrotron radiation and neutron powder diffraction. The crystal structure of 1 consists of layers of cobalt(II) ions extending in the bc-plane which are pillared along the crystallographic a-axis through the skeleton of the cbut 4- ligand. Three crystallographically independent cobalt(II) ions [Co(1), Co(2), and Co(3)] occur in 1. They are all six-coordinate with four carboxylate-oxygens [Co(1)-Co(3)] and two cis-[Co(1)] or trans-water molecules [Co(2) and Co(3)] building distorted octahedral surroundings. Regular alternating double oxo(carboxylate) [between Co(1) and Co(1a)] and oxo(carboxylate) plus one aqua and a syn-syn carboxylate bridges [between Co(1) and Co(2)] occur along the crystallographic b-axis, the values of the cobalt-cobalt separation being 3.1259(8) and 3.1555(6) Å, respectively. These chains are connected to the Co(3) atoms through the OCO carboxylate along the [01̄1] direction leading to the organic-inorganic bc-layers with Co(1)-OCO(anti-syn)-Co(3) and Co(2)-OCO(anti-anti)-Co(3) distances of 5.750(2) and 4.872(1) Å. The shortest interlayer cobalt-cobalt separation through the cbut4- skeleton along the crystallographic a-axis is 7.028(2) Å. Variable-temperature magnetic susceptibility measurements show the occurrence of antiferromagnetic ordering with a Néel temperature of 5.0 K, followed by a field-induced ferromagnetic transition under applied dc fields larger than 1500 Oe. The magnetic structure of 1 has been elucidated at low temperatures in zero field by neutron powder diffraction measurements and was found to be formed by ferromagnetic chains running along the b-axis which are antiferromagnetically coupled with the Co(3) ions through the c-axis giving rise to noncompensated magnetic moments within each bc-layer (ferrimagnetic plane). The occurrence of an antitranslation operation between these layers produces a weak interlayer antiferromagnetic coupling along the a-axis which is overcome by dc fields greater than 1500 Oe resulting in a phase transition toward a ferromagnetic state (metamagnetic behavior). © 2014 American Chemical Society.Partial funding for this work is provided by the Ministerio Español de Ciencia e Innovación through projects MAT2010-16981, CTQ2010-15364, DPI2010-21103- C04-03, MAT2011-27233-C02-02, MAT2011-25991 and “Factoría de Cristalización” (Consolider-Ingenio2010, CSD2006-00015), the Generalitat Valenciana (ISIC/2012/ 002), and the CEI Canarias: Campus Atlántico Tricontinental. P.D.-G. also thanks to Ministerio Español de Economia y Competitividad through FPI program for predoctoral contracts.Peer Reviewe
    corecore