223 research outputs found

    Caveolin-1 is a risk factor for postsurgery metastasis in preclinical melanoma models

    Get PDF
    Melanomas are highly lethal skin tumours that are frequently treated by surgical resection. However, the efficacy of such procedures is often limited by tumour recurrence and metastasis. Caveolin-1 (CAV1) has been attributed roles as a tumour suppressor, although in late-stage tumours, its presence is associated with enhanced metastasis. The expression of this protein in human melanoma development and particularly how the presence of CAV1 affects metastasis after surgery has not been defined. CAV1 expression in human melanocytes and melanomas increases with disease progression and is highest in metastatic melanomas. The effect of increased CAV1 expression can then be evaluated using B16F10 murine melanoma cells injected into syngenic immunocompetent C57BL/6 mice or human A375 melanoma cells injected into immunodeficient B6Rag1−/− mice. Augmented CAV1 expression suppresses tumour formation upon a subcutaneous injection, but enhances lung metastasis of cells injected into the tail vein in both models. A procedure was initially developed using B16F10 melanoma cells in C57BL/6 mice to mimic better the situation in patients undergoing surgery. Subcutaneous tumours of a defined size were removed surgically and local tumour recurrence and lung metastasis were evaluated after another 14 days. In this postsurgery setting, CAV1 presence in B16F10 melanomas favoured metastasis to the lung, although tumour suppression at the initial site was still evident. Similar results were obtained when evaluating A375 cells in B6Rag1−/− mice. These results implicate CAV1 expression in melanomas as a marker of poor prognosis for patients undergoing surgery as CAV1 expression promotes experimental lung metastasis in two different preclinical models

    Localization of the 16S mitochondrial rRNA in the nucleus of mammalian spermatogenic cells

    Get PDF
    Indexación: Scopus.Amplification of RNA from human sperm heads yielded a fragment of 435 bp that shares 100% identity with a central region of the 16S mitochondrial rRNA. The nuclear localization in the sperm of the mitochondrial RNA was confirmed by in-situ hybridization. These results, together with the localization of the 16S mitochondrial rRNA in mouse sperm, are the first demonstration that the organelle transcript is a normal component of the mammalian gamete. The possibility that the nuclear mitochondrial RNA arises from nuclear transcription of a mitochondrial pseudogene was ruled out. To determine when during spermatogenesis the mitochondrial RNA is localized in the nucleus, in-situ hybridization of mouse and human testis was carried out. The nuclei of spermatogonia, spermatocytes and round and elongated spermatids were all positively stained. In human spermatocytes, the nuclear staining pattern was fibrillar, suggesting an association of the mitochondrial transcript with the meiotic chromosomes. These results indicate that early in spermatogenesis and before the onset of meiosis, the 16S mitochondrial rRNA is localized in the nucleus of spermatogenic cells, suggesting a process of translocation of the transcript from the mitochondria.https://academic.oup.com/molehr/article/8/11/977/105777

    Technological Devices in the Archives: A Policy Analysis

    Get PDF
    Doing research in the archive is the cornerstone of humanities scholarship. Various archives institute policies regarding the use of technological devices, such as mobile phones, laptops, and cameras in their reading rooms. Such policies directly affect the scholars as the devices mediate the nature of their interaction with the source materials in terms of capturing, organizing, note taking, and record keeping for future use of found materials. In this paper, we present our analysis of the policies of thirty archives regarding the use of technology in their reading rooms. This policy analysis, along with data from interviews of scholars and archivists, is intended to serve as a basis for developing mobile applications for assisting scholars in their research activities. In this paper we introduce an early prototype of such a mobile application— AMTracker.Informatio

    Gene structure of the carp fish ribosomal protein L41: Seasonally regulated expression

    Get PDF
    Indexación: Scopus.The seasonal acclimatization of the carp fish demands physiological compensatory responses. The process involves profound nucleolar adjustments and remarkable changes in rRNA synthesis, which affect ribosomal biogenesis. We have documented that protein kinase CK2, whose activity is related to ribosomal protein L41 and the regulation of rRNA synthesis, was expressed in notably higher amounts in summer-acclimatized carp compared to the cold-season adapted fish. Thus, we approached the study of the functional genomics of carp L41 protein. We report the first cloning of a fish L41 gene encoding the highly conserved 25 amino acids, including approximately 1700 bp regulatory upstream region and the 3′ polyadenylation signal, plus the isolation and characterization of two different L41 cDNAs. We found a clear differential expression of L41, which follows the same pattern as protein kinase CK2β that transcribes at higher levels in the summer-acclimatized carp than it does in the winter-adapted fish.https://www.sciencedirect.com/science/article/pii/S0006291X0200715

    Exosomes released upon mitochondrial ASncmtRNA knockdown reduce tumorigenic properties of malignant breast cancer cells

    Get PDF
    Indexación ScopusDuring intercellular communication, cells release extracellular vesicles such as exosomes, which contain proteins, ncRNAs and mRNAs that can influence proliferation and/or trigger apoptosis in recipient cells, and have been proposed to play an essential role in promoting invasion of tumor cells and in the preparation of metastatic niches. Our group proposed the antisense non-coding mitochondrial RNA (ASncmtRNA) as a new target for cancer therapy. ASncmtRNA knockdown using an antisense oligonucleotide (ASO-1537S) causes massive death of tumor cells but not normal cells and strongly reduces metastasis in mice. In this work, we report that exosomes derived from ASO-1537S-treated MDA-MB-231 breast cancer cells (Exo-1537S) inhibits tumorigenesis of recipient cells, in contrast to exosomes derived from control-ASO-treated cells (Exo-C) which, in contrast, enhance these properties. Furthermore, an in vivo murine peritoneal carcinomatosis model showed that Exo-1537S injection reduced tumorigenicity compared to controls. Proteomic analysis revealed the presence of Lactadherin and VE-Cadherin in exosomes derived from untreated cells (Exo-WT) and Exo-C but not in Exo-1537S, and the latter displayed enrichment of proteasomal subunits. These results suggest a role for these proteins in modulation of tumorigenic properties of exosome-recipient cells. Our results shed light on the mechanisms through which ASncmtRNA knockdown affects the preparation of breast cancer metastatic niches in a peritoneal carcinomatosis model. © 2020, The Author(s).https://www-nature-com.recursosbiblioteca.unab.cl/articles/s41598-019-57018-

    Understanding Marine Mussel Adhesion

    Get PDF
    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion
    • …
    corecore