50 research outputs found

    PMT37: BENEFITS OF EARLY MODELING IN DRUG DISCOVERY

    Get PDF

    Pattern of healthcare resource utilization and direct costs associated with manic episodes in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although some studies indicate that bipolar disorder causes high health care resources consumption, no study is available addressing a cost estimation of bipolar disorder in Spain. The aim of this observational study was to evaluate healthcare resource utilization and the associated direct cost in patients with manic episodes in the Spanish setting.</p> <p>Methods</p> <p>Retrospective descriptive study was carried out in a consecutive sample of patients with a DSM-IV diagnosis of bipolar type I disorder with or without psychotic symptoms, aged 18 years or older, and who were having an active manic episode at the time of inclusion. Information regarding the current manic episode was collected retrospectively from the medical record and patient interview.</p> <p>Results</p> <p>Seven hundred and eighty-four evaluable patients, recruited by 182 psychiatrists, were included in the study. The direct cost associated with healthcare resource utilization during the manic episode was high, with a mean cost of nearly €4,500 per patient, of which approximately 55% corresponded to the cost of hospitalization, 30% to the cost of psychopharmacological treatment and 10% to the cost of specialized care.</p> <p>Conclusions</p> <p>Our results show the high cost of management of the patient with a manic episode, which is mainly due to hospitalizations. In this regard, any intervention on the management of the manic patient that could reduce the need for hospitalization would have a significant impact on the costs of the disease.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore