108 research outputs found

    Carbonate factory of Pietra di Finale coastal wedge (Miocene): the unusual abundance of stylasterids (Cnidaria, Hydrozoa)

    Get PDF
    This work focuses on the carbonate factories constituting the Pietra di Finale Fm cropping out in the Ligurian Alps. This unit constituted a mixed carbonate-siliciclastic coastal wedge developed during the Middle Miocene. The carbonate factories characterizing the coastal wedge of the Pietra di Finale clearly differ from those of the coastal mixed systems and carbonate platforms developing during the Miocene elsewhere in the Mediterranean area. Here, in the Ligurian Alps, the euphotic carbonate factory does not show any evidence of seagrass meadows and coral bioconstructions. Zooxanthellate corals are present only as skeletal debris associated with abundant stylasterids. In the mesophotic and oligophotic zones, the typical oligophotic biota of red algae and larger benthic foraminifers are strongly reduced. The coastal wedge of the Pietra di Finale shows an unusual abundance of stylasterids, classically interpreted as deep-water biota. However, in this example, the absence of low-energy textures and other skeletal components suggest a shallow-water origin, probably in the eu- or mesophotic zone. The stylasterids colonized the hard substrates available and were successively removed and resedimented to form the skeletal fraction of the coastal wedge of the Pietra di Finale. The abundance of stylasterids is restricted to particular and limited situations in the Miocene of the Mediterranean, thus suggesting that their abnormal development is controlled by local rather than global factors

    Coral assemblages and bioconstructions adapted to the depositional dynamics of a mixed carbonate-siliciclastic setting: the case study of the Burdigalian Bonifacio Basin (South Corsica)

    Get PDF
    Coral bioconstructions associated with mixed carbonate-siliciclastic settings are known to be strongly controlled by coastal morphology and paleotopography. A striking example is represented by the different types of coral bioconstructions and coral-rich deposits of the Cala di Labra Formation deposited in the coastal environment of the Bonifacio Basin (Corsica, France) during the Early Miocene. Detailed mapping on photomosaics allowed accurate documentation of the internal organization of coral deposits as well as lateral and vertical facies relationships. Four types of coral bioconstructions (CB) and one reworked coral deposits (RCD) have been recognized. The CB are represented by sigmoidal cluster reefs, coral carpets and skeletal conglomerates rich in corals. The RCD occurs in lens-shaped bodies intercalated within clinoforms composed of bioclastic loatstones and coarse packstones. The investigated bioconstructions can be contextualised in a coastal environment. In the upper shoreface corals developed in association with the oyster Hyotissa, above bioclastic conglomerates sourced by ephemeral streams and erosion of the granitic coastline. In the lower shoreface corals formed sigmoidal bioconstructions interpreted as cluster reefs, whereas coral carpets developed during a relative sea-level rise related to the middle Burdigalian transgressive phase. The reworked coral deposits can be interpreted as lobe-shaped deposits of coarse-grained bioclastic submarine fans formed at the base of the depositional slope of an infralittoral prograding wedge system

    Polimorfismi biochimici nel sangue e nel latte della capra sarda

    Get PDF
    The Authors, in a study on 990 individual samples of blood and milk collected from Sardinian goats, have found the presence of polymorphism at the loci Hb, Tf, X protein, β- Lg, αs-Cn, while the loci Alb, CA, SOD, α-La, β-Cn were monomorphic

    Haplotype Affinities Resolve a Major Component of Goat (Capra hircus) MtDNA D-Loop Diversity and Reveal Specific Features of the Sardinian Stock

    Get PDF
    Goat mtDNA haplogroup A is a poorly resolved lineage absorbing most of the overall diversity and is found in locations as distant as Eastern Asia and Southern Africa. Its phylogenetic dissection would cast light on an important portion of the spread of goat breeding. The aims of this work were 1) to provide an operational definition of meaningful mtDNA units within haplogroup A, 2) to investigate the mechanisms underlying the maintenance of diversity by considering the modes of selection operated by breeders and 3) to identify the peculiarities of Sardinian mtDNA types. We sequenced the mtDNA D-loop in a large sample of animals (1,591) which represents a non-trivial quota of the entire goat population of Sardinia. We found that Sardinia mirrors a large quota of mtDNA diversity of Western Eurasia in the number of variable sites, their mutational pattern and allele frequency. By using Bayesian analysis, a distance-based tree and a network analysis, we recognized demographically coherent groups of sequences identified by particular subsets of the variable positions. The results showed that this assignment system could be reproduced in other studies, capturing the greatest part of haplotype diversity

    MECO and Alpine orogenesis. Constraints for facies evolution of the Bartonian nummulitic and Solenomeris limestone in the Argentina Valley (Ligurian Alps)

    No full text
    The Eocene represents the last greenhouse interval before Present. The maximum warming during the early Eocene was followed by a long-term cooling trend culminating in the Antarctica glaciation at the base of the Oligocene. Superimposed on this long-term cooling trend there is a prominent transient warming event known as the middle Eocene climatic optimum (MECO) occurring during the early Bartonian. The carbonate ramp succession cropping out in the Argentina Valley (Maritime Alps) offers new insights on the evolution of shallow water realms during this time interval. This ramp displays two main facies belts, middle and outer ramp. The middle ramp is recorded by larger benthic foraminifer floatstone to rudstone, passing to Solenomeris branches and nodule floatstone to rudstone evolving to branching coralline algal floatstone. The outer ramp is dominated by bioturbated marly wackestone to packstone alternating with larger benthic foraminifer floatstone with a silty matrix. The investigated ramp was affected by continuous dispersion and reworking of the skeletal components as other Tethyan Eocene ramps. During the Eocene, the Alpine foreland was influenced by fine terrigenous input controlling the trophic conditions and promoting seawater stratification and the development of a strong pycnocline, for which many perturbations could propagate as internal waves. The reworking of skeletal components of the ramp has been ascribed to the action of internal waves. The switch of carbonate production from a carbonate factory dominated by larger benthic foraminifera to a factory in which the encrusting foraminifer Solenomeris was the main carbonate producer biota, is indicative of a radical change in palaeoenvironmental conditions affecting the early Bartonian. The acme of Solenomeris often coincided with the crisis of carbonate producers during intervals of an evident deterioration of environmental conditions. In this case the acme is probably related to the adverse conditions linked to the (MECO) warming event. Finally, the drowning of the nummulitic ramp has been caused by light reduction for the photo-dependent biota due to progressively increasing depth linked to flexural subsidence of the foreland plate, and minor efficiency of the aphotic carbonate factory
    • …
    corecore