37 research outputs found
On the origins of islands
Theoretical and Experimental Linguistic
Properties of Sarychev sulphate aerosols over the Arctic
Aerosols from the Sarychev Peak volcano entered the Arctic region less than a week after the strongest SO2 eruption on June 15 and 16, 2009 and had, by the second week in July, spread out over the entire Arctic region. These predominantly stratospheric aerosols were determined to be sub-micron in size and inferred to be composed of sulphates produced from the condensation of SO2 gases emitted during the eruption. Average (500 nm) Sarychev-induced stratospheric optical depths over the Polar Environmental Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, Canada were found to be between 0.03 and 0.05 during the months of July and August, 2009. This estimate, derived from sunphotometry and integrated lidar backscatter profiles was consistent with averages derived from lidar estimates over Ny-Ålesund (Spitsbergen). The Sarychev SOD e-folding time at Eureka, deduced from lidar profiles, was found to be approximately 4 months relative to a regression start date of July 27. These profiles initially revealed the presence of multiple Sarychev plumes between the tropopause and about 17 km altitude. After about two months, the complex vertical plume structures had collapsed into fewer, more homogeneous plumes located near the tropopause. It was found that the noisy character of daytime backscatter returns induced an artifactual minimum in the temporal, pan-Arctic, CALIOP SOD response to Sarychev sulphates. A depolarization ratio discrimination criterion was used to separate the CALIOP stratospheric layer class into a low depolarization subclass which was more representative of Sarychev sulphates. Post-SAT (post Sarychev Arrival Time) retrievals of the fine mode effective radius (reff,f) and the logarithmic standard deviation for two Eureka sites and Thule, Greenland were all close to 0.25 μm and 1.6 respectively. The stratospheric analogue to the columnar reff,f average was estimated to be reff,f(+) = 0.29 μm for Eureka data. Stratospheric, Raman lidar retrievals at Ny-Ålesund, yielded a post-SAT average of reff,f(+) = 0.27 μm. These results are ~ 50% larger than the background stratospheric-aerosol value. They are also about a factor of two larger than modeling values used in recent publications or about a factor of five larger in terms of (per particle) backscatter cross section
Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka
Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006/07 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m<sup>&minus;2</sup> in the wavelength band from 5.6 to 20 μm for 532 nm optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events from residual blowing snow that becomes a source of boundary layer ice crystals distinct from the classical diamond dust phenomenon
Blowing Snow at McMurdo Station, Antarctica During the AWARE Field Campaign: Surface and Ceilometer Observations
Blowing snow (BLSN) is an impactful process in cold climates, affecting regional thermodynamics, radiation properties, and the surface mass balance of snow. Though it has significant climatic impacts, the process is still poorly understood and not widely included in weather and climate models. In 2016, the AWARE Field Campaign saw the deployment of a large suite of in situ and remote sensing instruments to McMurdo Station, Antarctica allowing for investigation of BLSN. A ceilometer-based BLSN detection algorithm used elsewhere in Antarctica is applied to data from AWARE, yielding a BLSN frequency of 14.1% compared to 8.2% as detected by human observers. To increase confidence in detections, the algorithm is updated to have shorter temporal averaging and to include a variety of meteorological thresholds to limit false detections due to fog. Efforts to incorporate a laser disdrometer into the algorithm were unsuccessful. An unphysical dependence of particle size distributions on wind speed is found suggesting observations are problematic at wind speeds greater than 10 m s−1. The revised algorithm detected a BLSN frequency of 7.4%, increasing agreement with human observations and confidence that the process is actively occurring at the observation site. These observations are put into context of a climatology of human observations of BLSN at McMurdo station from 2002–2018. An annual average of 8.0%–14.0% is estimated, with a total annual range of 3.4%–21.3%. Regardless of whether BLSN is observed by humans or instrument, the majority of cases at this location are associated with ongoing precipitation
Monitoring litter and microplastics in Arctic mammals and bird
Plastic pollution has been reported to affect Arctic mammals and birds. There are strengths and limitations to monitoring litter and microplastics using Arctic mammals and birds. One strength is the direct use of these data to understand the potential impacts on Arctic biodiversity as well as effects on human health, if selected species are consumed. Monitoring programs must be practically designed with all purposes in mind, and a spectrum of approaches and species will be required. Spatial and temporal trends of plastic pollution can be built on the information obtained from studies on northern fulmars (Fulmarus glacialis), a species that is an environmental indicator. To increase our understanding of the potential implications for human health, the species and locations chosen for monitoring should be selected based on the priorities of local communities. Monitoring programs under development should examine species for population level impacts in Arctic mammals and birds. Mammals and birds can be useful in source and surveillance monitoring via locally designed monitoring programs. We recommend future programs consider a range of monitoring objectives with mammals and birds as part of the suite of tools for monitoring litter and microplastics, plastic chemical additives and effects, and for understanding sources.publishedVersio