1,768 research outputs found

    Study of Chromium-Frit-Type Coatings for High-Temperature Protection of Molybdenum

    Get PDF
    The achievement of more compact and efficient power plants for aircraft is dependent, among other factors, on the perfection of heat-resisting materials that are superior to those in current use. Molybdenum is one of the high-melting metals (melting point, 4750 F). It is fairly abundant and also can be worked into many of the shapes required in modern power plants. To permit its widespread use at elevated temperatures, however, some means must first be found to prevent its rapid oxidation. The application of a protective coating is one method that might be used to achieve this goal. In the present work, a number of chromium-frit-type coatings were studied. These were bonded to molybdenum specimens by firing in controlled atmospheres to temperatures in the range of 2400 to 2700 F

    Finger patterns produced by thermomagnetic instability in superconductors

    Full text link
    A linear analysis of thermal diffusion and Maxwell equations is applied to study the thermomagnetic instability in a type-II superconducting slab. It is shown that the instability can lead to formation of spatially nonuniform distributions of magnetic field and temperature. The distributions acquire a finger structure with fingers perpendicular to the screening current direction. We derive the criterion for the instability, and estimate its build-up time and characteristic finger width. The fingering instability emerges when the background electric field is larger than a threshold field, E>EcE>E_c, and the applied magnetic field exceeds a value Hfing1/EH_fing \propto 1/\sqrt{E}. Numerical simulations support the analytical results, and allow to follow the development of the fingering instability beyond the linear regime. The fingering instability may be responsible for the nucleation of dendritic flux patterns observed in superconducting films using magneto-optical imaging.Comment: 8 pages, 6 figures, accepted to Phys. Rev. B; (new version: minor changes

    Twist-four Corrections to Parity-Violating Electron-Deuteron Scattering

    Full text link
    Parity violating electron-deuteron scattering can potentially provide a clean access to electroweak couplings that are sensitive to physics beyond the Standard Model. However hadronic effects can contaminate their extraction from high-precision measurements. Power-suppressed contributions are one of the main sources of uncertainties along with charge-symmetry violating effects in leading-twist parton densities. In this work we calculate the twist-four correlation functions contributing to the left-right polarization asymmetry making use of nucleon multiparton light-cone wave functions.Comment: 12 pages, 3 figure

    Commercial air transport hazard warning and avoidance system. Volume 2 - Requirements studies Final report

    Get PDF
    Operational requirements and cost effectiveness of commercial air transport hazard warning and avoidance syste

    Diffractive vector meson electroproduction at small Bjorken xx within GPD approach

    Full text link
    We study light vector meson electroproduction at small xx within the generalized parton distributions (GPDs) model. The modified perturbative approach is used, where the quark transverse degrees of freedom in the vector meson wave function and hard subprocess are considered. Our results on the cross section and spin observables are in good agreement with experimentComment: 6 pages, 5 figures, presented at Symmetries and Spin meeting, Prague, 8- 14 July, 200

    Nucleon distribution amplitudes from lattice QCD

    Get PDF
    We calculate low moments of the leading-twist and next-to-leading twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MSbar scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature.Comment: 5 pages, 3 figures, 2 tables. RevTeX style. Normalization for \lambda_i corrected. Discussion of the results extended. To be published in PR

    Signatures of Axinos and Gravitinos at Colliders

    Get PDF
    The axino and the gravitino are well-motivated candidates for the lightest supersymmetric particle (LSP) and also for cold dark matter in the Universe. Assuming that a charged slepton is the next-to-lightest supersymmetric particle (NLSP), we show how the NLSP decays can be used to probe the axino LSP scenario in hadronic axion models as well as the gravitino LSP scenario at the Large Hadron Collider and the International Linear Collider. We show how one can identify experimentally the scenario realized in nature. In the case of the axino LSP, the NLSP decays will allow one to estimate the value of the axino mass and the Peccei-Quinn scale.Comment: 20 pages, 5 figures, revised version as published in Phys.Lett.B (comments on the experimental feasibility added

    On the Equation of State of Nuclear Matter in 158A GeV Pb+Pb Collisions

    Get PDF
    Within a hydrodynamical approach we investigate the sensitivity of single inclusive momentum spectra of hadrons in 158A GeV Pb+Pb collisions to three different equations of state of nuclear matter. Two of the equations of state are based on lattice QCD results and include a phase transition to a quark-gluon plasma. The third equation of state has been extracted from the microscopic transport code RQMD under the assumption of complete local thermalization. All three equations of state provide reasonable fits to data taken by the NA44 and NA49 Collaborations. The initial conditions before the evolution of the fireballs and the space-time evolution pictures differ dramatically for the three equations of state when the same freeze-out temperature is used in all calculations. However, the softest of the equations of state results in transverse mass spectra that are too steep in the central rapidity region. We conclude that the transverse particle momenta are determined by the effective softness of the equation of state during the fireball expansion.Comment: 4 pages, including 4 figures and 2 tables. For a PostScript file of the manuscript, you can also goto http://t2.lanl.gov/schlei/eprint.htm

    Expansion and Hadronization of a Chirally Symmetric Quark--Meson Plasma

    Get PDF
    Using a chirally symmetric Lagrangian, which contains quarks as elementary degrees of freedom and mesons as bound states, we investigate the expansion and hadronization of a fireball, which initially contains only quarks and produces mesons by collisions. For this model, we study the time scales of expansion and thermal and chemical equilibration. We find that the expansion progresses relatively fast, leaving not necessarily enough time to establish thermal and chemical equilibrium. Mesons are produced in the bulk of the fireball rather than at a surface, at a temperature below the Mott temperature. Initial density fluctuations become amplified during the expansion. These observations challenge the applicability of hydrodynamical approaches to the expansion of a quark-gluon plasma
    corecore