3,485 research outputs found
Higher-order spin effects in the dynamics of compact binaries II. Radiation field
Motivated by the search for gravitational waves emitted by binary black
holes, we investigate the gravitational radiation field of point particles with
spins within the framework of the multipolar-post-Newtonian wave generation
formalism. We compute: (i) the spin-orbit (SO) coupling effects in the binary's
mass and current quadrupole moments one post-Newtonian (1PN) order beyond the
dominant effect, (ii) the SO contributions in the gravitational-wave energy
flux and (iii) the secular evolution of the binary's orbital phase up to 2.5PN
order. Crucial ingredients for obtaining the 2.5PN contribution in the orbital
phase are the binary's energy and the spin precession equations, derived in
paper I of this series. These results provide more accurate gravitational-wave
templates to be used in the data analysis of rapidly rotating Kerr-type
black-hole binaries with the ground-based detectors LIGO, Virgo, GEO 600 and
TAMA300, and the space-based detector LISA.Comment: includes the correction of an erratum to be published in Phys. Rev.
Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order
The inspiral of compact binaries, driven by gravitational-radiation reaction,
is investigated through 7/2 post-Newtonian (3.5PN) order beyond the quadrupole
radiation. We outline the derivation of the 3.5PN-accurate binary's
center-of-mass energy and emitted gravitational flux. The analysis consistently
includes the relativistic effects in the binary's equations of motion and
multipole moments, as well as the contributions of tails, and tails of tails,
in the wave zone. However the result is not fully determined because of some
physical incompleteness, present at the 3PN order, of the model of
point-particle and the associated Hadamard-type self-field regularization. The
orbital phase, whose prior knowledge is crucial for searching and analyzing the
inspiral signal, is computed from the standard energy balance argument.Comment: 12 pages, version which includes the correction of an Erratum to be
published in Phys. Rev. D (2005
On the structure of the post-Newtonian expansion in general relativity
In the continuation of a preceding work, we derive a new expression for the
metric in the near zone of an isolated matter system in post-Newtonian
approximations of general relativity. The post-Newtonian metric, a solution of
the field equations in harmonic coordinates, is formally valid up to any order,
and is cast in the form of a particular solution of the wave equation, plus a
specific homogeneous solution which ensures the asymptotic matching to the
multipolar expansion of the gravitational field in the exterior of the system.
The new form provides some insights on the structure of the post-Newtonian
expansion in general relativity and the gravitational radiation reaction terms
therein.Comment: 22 pages, to appear in Phys. Rev.
Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates
Dimensional regularization is used to derive the equations of motion of two
point masses in harmonic coordinates. At the third post-Newtonian (3PN)
approximation, it is found that the dimensionally regularized equations of
motion contain a pole part [proportional to 1/(d-3)] which diverges as the
space dimension d tends to 3. It is proven that the pole part can be
renormalized away by introducing suitable shifts of the two world-lines
representing the point masses, and that the same shifts renormalize away the
pole part of the "bulk" metric tensor g_munu(x). The ensuing, finite
renormalized equations of motion are then found to belong to the general
parametric equations of motion derived by an extended Hadamard regularization
method, and to uniquely determine the heretofore unknown 3PN parameter lambda
to be: lambda = - 1987/3080. This value is fully consistent with the recent
determination of the equivalent 3PN static ambiguity parameter, omega_s = 0, by
a dimensional-regularization derivation of the Hamiltonian in
Arnowitt-Deser-Misner coordinates. Our work provides a new, powerful check of
the consistency of the dimensional regularization method within the context of
the classical gravitational interaction of point particles.Comment: 82 pages, LaTeX 2e, REVTeX 4, 8 PostScript figures, minor changes to
reflect Phys. Rev. D versio
Gravitational waves from black hole binary inspiral and merger: The span of third post-Newtonian effective-one-body templates
We extend the description of gravitational waves emitted by binary black
holes during the final stages of inspiral and merger by introducing in the
third post-Newtonian (3PN) effective-one-body (EOB) templates seven new
``flexibility'' parameters that affect the two-body dynamics and gravitational
radiation emission. The plausible ranges of these flexibility parameters,
notably the parameter characterising the fourth post-Newtonian effects in the
dynamics, are estimated. Using these estimates, we show that the currently
available standard 3PN bank of EOB templates does ``span'' the space of signals
opened up by all the flexibility parameters, in that their maximized mutual
overlaps are larger than 96.5%. This confirms the effectualness of 3PN EOB
templates for the detection of binary black holes in gravitational-wave data
from interferometric detectors. The possibility to drastically reduce the
number of EOB templates using a few ``universal'' phasing functions is
suggested.Comment: 23 pages, 3 figures, 4 tables, with revtex4, Minor clarifications,
Final published versio
Third post-Newtonian dynamics of compact binaries: Equations of motion in the center-of-mass frame
The equations of motion of compact binary systems and their associated
Lagrangian formulation have been derived in previous works at the third
post-Newtonian (3PN) approximation of general relativity in harmonic
coordinates. In the present work we investigate the binary's relative dynamics
in the center-of-mass frame (center of mass located at the origin of the
coordinates). We obtain the 3PN-accurate expressions of the center-of-mass
positions and equations of the relative binary motion. We show that the
equations derive from a Lagrangian (neglecting the radiation reaction), from
which we deduce the conserved center-of-mass energy and angular momentum at the
3PN order. The harmonic-coordinates center-of-mass Lagrangian is equivalent,
{\it via} a contact transformation of the particles' variables, to the
center-of-mass Hamiltonian in ADM coordinates that is known from the
post-Newtonian ADM-Hamiltonian formalism. As an application we investigate the
dynamical stability of circular binary orbits at the 3PN order.Comment: 31 pages, to appear in Classical and Quantum Gravit
Tail-induced spin-orbit effect in the gravitational radiation of compact binaries
Gravitational waves contain tail effects which are due to the back-scattering
of linear waves in the curved space-time geometry around the source. In this
paper we improve the knowledge and accuracy of the two-body inspiraling
post-Newtonian (PN) dynamics and gravitational-wave signal by computing the
spin-orbit terms induced by tail effects. Notably, we derive those terms at 3PN
order in the gravitational-wave energy flux, and 2.5PN and 3PN orders in the
wave polarizations. This is then used to derive the spin-orbit tail effects in
the phasing through 3PN order. Our results can be employed to carry out more
accurate comparisons with numerical-relativity simulations and to improve the
accuracy of analytical templates aimed at describing the whole process of
inspiral, merger and ringdown.Comment: Minor corrections. To be published in Physical Review
Multipole expansion at the level of the action
Sources of long wavelength radiation are naturally described by an effective
field theory (EFT) which takes the form of a multipole expansion. Its action is
given by a derivative expansion where higher order terms are suppressed by
powers of the ratio of the size of the source over the wavelength. In order to
determine the Wilson coefficients of the EFT, i.e. the multipole moments, one
needs the mapping between a linear source term action and the multipole
expansion form of the action of the EFT. In this paper we perform the multipole
expansion to all orders by Taylor expanding the field in the source term and
then decomposing the action into symmetric trace free tensors which form
irreducible representations of the rotation group. We work at the level of the
action, and we obtain the action to all orders in the multipole expansion and
the exact expressions for the multipole moments for a scalar field,
electromagnetism and linearized gravity. Our results for the latter two cases
are manifestly gauge invariant. We also give expressions for the energy flux
and the (gauge dependent) radiation field to all orders in the multipole
expansion. The results for linearized gravity are a component of the EFT
framework NRGR and will greatly simplify future calculations of gravitational
wave observables in the radiation sector of NRGR.Comment: 39 pages, some typos corrected, published versio
Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order
We compute the radiation reaction force on the orbital motion of compact
binaries to the 3.5 post-Newtonian (3.5PN) approximation, i.e. one PN order
beyond the dominant effect. The method is based on a direct PN iteration of the
near-zone metric and equations of motion of an extended isolated system, using
appropriate ``asymptotically matched'' flat-space-time retarded potentials. The
formalism is subsequently applied to binary systems of point particles, with
the help of the Hadamard self-field regularisation. Our result is the 3.5PN
acceleration term in a general harmonic coordinate frame. Restricting the
expression to the centre-of-mass frame, we find perfect agreement with the
result derived in a class of coordinate systems by Iyer and Will using the
energy and angular momentum balance equations.Comment: 28 pages, references added, to appear in Classical and Quantum
Gravit
Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions
Two long-standing problems with the post-Newtonian approximation for isolated
slowly-moving systems in general relativity are: (i) the appearance at high
post-Newtonian orders of divergent Poisson integrals, casting a doubt on the
soundness of the post-Newtonian series; (ii) the domain of validity of the
approximation which is limited to the near-zone of the source, and prevents
one, a priori, from incorporating the condition of no-incoming radiation, to be
imposed at past null infinity. In this article, we resolve the problem (i) by
iterating the post-Newtonian hierarchy of equations by means of a new
(Poisson-type) integral operator that is free of divergencies, and the problem
(ii) by matching the post-Newtonian near-zone field to the exterior field of
the source, known from previous work as a multipolar-post-Minkowskian expansion
satisfying the relevant boundary conditions at infinity. As a result, we obtain
an algorithm for iterating the post-Newtonian series up to any order, and we
determine the terms, present in the post-Newtonian field, that are associated
with the gravitational-radiation reaction onto an isolated slowly-moving matter
system.Comment: 61 pages, to appear in Phys. Rev.
- …
