172 research outputs found

    Advantages of the new loop diuretic torasemide over furosemide in patients with cirrhosis and ascites

    Get PDF
    Torasemide is a new loop diuretic with a longer half-life and longer action than furosemide in healthy subjects. In order to evaluate the pharmacodynamic effects, single oral doses of furosemide (80 mg) and torasemide (20 mg), which were equipotent in healthy subjects, were given to 14 patients with cirrhosis and ascites. Before the study patients underwent an equilibration period of 4 days without diuretics. The drugs were alternated following a randomized double-blind cross-over design after a wash-out period of at least 2 days. Urine was collected at defined intervals for 24 h after drug administration and blood samples were taken before, 6 h and 24 h after medication. Torasemide induced greater cumulative 24 h diuresis (2863 ± 343 vs. 2111 ± 184 ml, p < 0.01) than furosemide. Torasemide did not differ from furosemide for cumulative 0–6 h sodium excretion (96 ± 17 vs. 92 ± 23 mmol sodium) but caused a more pronounced cumulative 6–24 h natriuresis (38 ± 11 vs. 17 ± 4 mmol, p < 0.05). Five patients exhibited a weak response to furosemide (0–36 mmol sodium/24 h, median 24 mmol; 690–1460 ml urinary volume/24 h, median 1325 ml). These patients showed significantly higher natriuresis and diuresis following torasemide (26–136 mmol sodium/24 h, median 78 mmol, p < 0.05; 1670–3610 ml urinary volume/24 h, median 2200 ml, p < 0.05). Twenty-four hours after administration of both drugs there were no significant changes in hemodynamic, renal or hormonal parameters. No adverse effects were noted with either treatment. These findings suggest that torasemide might be more advantageous than furosemide in the treatment of ascites due to cirrhosis

    Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus

    Get PDF
    In previous studies, we highlighted a multistep phosphorelay (MSP) system in poplars composed of two hybrid-type Histidine aspartate Kinases, dkHK1a and dkHK1b, which interact with three Histidine Phosphotransfer proteins, dkHPt2, 7, and 9, which in turn interact with six type B Response Regulators. These interactions correspond to the dkHK1a-b/dkHPts/dkRRBs MSP. This MSP is putatively involved in an osmosensing pathway, as dkHK1a-b are orthologous to the Arabidopsis osmosensor AHK1, and able to complement a mutant yeast deleted for its osmosensors. Since type A RRs have been characterized as negative regulators in cytokinin MSP signaling due to their interaction with HPt proteins, we decided in this study to characterize poplar type A RRs and their implication in the MSP. For a global view of this MSP, we isolated 10 poplar type A RR cDNAs, and determined their subcellular localization to check the in silico prediction experimentally. For most of them, the in planta subcellular localization was as predicted, except for three RRAs, for which this experimental approach gave a more precise localization. Interaction studies using yeast two-hybrid and in planta BiFC assays, together with transcript expression analysis in poplar organs led to eight dkRRAs being singled out as partners which could interfere the dkHK1a-b/dkHPts/dkRRBs MSP identified in previous studies. Consequently, the results obtained in this study now provide an exhaustive view of dkHK1a-b partners belonging to a poplar MSP

    Soot Volume Fraction Measurements in a Three-Dimensional Laminar Diffusion Flame established in Microgravity

    Get PDF
    A methodology for the estimation of the soot volume fraction in a three-dimensional laminar diffusion flame is presented. All experiments are conducted in microgravity and have as objective producing quantitative data that can serve to estimate radiative heat transfer in flames representative of fires in spacecraft. The competitive nature of formation and oxidation of soot and its direct coupling with the streamlines (source of oxygen) require for these measurements to be conducted within the exact configuration. Thus three-dimensional measurements are needed. Ethylene is injected through a square porous burner and the oxidizer flows parallel to its surface. The methodology uses CH* chemiluminescence measurements to correct for three-dimensional effects affecting light attenuation measurements. Corrected local soot concentrations are thus obtained. All experiments are conducted during parabolic flights and the parameters varied are fuel and oxidizer flow rates

    Chronic T cell receptor stimulation unmasks NK receptor signaling in peripheral T cell lymphomas via epigenetic reprogramming.

    Get PDF
    Peripheral T cell lymphomas (PTCLs) represent a significant unmet medical need with dismal clinical outcomes. The T cell receptor (TCR) is emerging as a key driver of T lymphocyte transformation. However, the role of chronic TCR activation in lymphomagenesis and in lymphoma cell survival is still poorly understood. Using a mouse model, we report that chronic TCR stimulation drove T cell lymphomagenesis, whereas TCR signaling did not contribute to PTCL survival. The combination of kinome, transcriptome, and epigenome analyses of mouse PTCLs revealed a NK cell-like reprogramming of PTCL cells with expression of NK receptors (NKRs) and downstream signaling molecules such as Tyrobp and SYK. Activating NKRs were functional in PTCLs and dependent on SYK activity. In vivo blockade of NKR signaling prolonged mouse survival, demonstrating the addiction of PTCLs to NKRs and downstream SYK/mTOR activity for their survival. We studied a large collection of human primary samples and identified several PTCLs recapitulating the phenotype described in this model by their expression of SYK and the NKR, suggesting a similar mechanism of lymphomagenesis and establishing a rationale for clinical studies targeting such molecules

    A refined molecular taxonomy of breast cancer

    Get PDF
    The current histoclinical breast cancer classification is simple but imprecise. Several molecular classifications of breast cancers based on expression profiling have been proposed as alternatives. However, their reliability and clinical utility have been repeatedly questioned, notably because most of them were derived from relatively small initial patient populations. We analyzed the transcriptomes of 537 breast tumors using three unsupervised classification methods. A core subset of 355 tumors was assigned to six clusters by all three methods. These six subgroups overlapped with previously defined molecular classes of breast cancer, but also showed important differences, notably the absence of an ERBB2 subgroup and the division of the large luminal ER+ group into four subgroups, two of them being highly proliferative. Of the six subgroups, four were ER+/PR+/AR+, one was ER−/PR−/AR+ and one was triple negative (AR−/ER−/PR−). ERBB2-amplified tumors were split between the ER−/PR−/AR+ subgroup and the highly proliferative ER+ LumC subgroup. Importantly, each of these six molecular subgroups showed specific copy-number alterations. Gene expression changes were correlated to specific signaling pathways. Each of these six subgroups showed very significant differences in tumor grade, metastatic sites, relapse-free survival or response to chemotherapy. All these findings were validated on large external datasets including more than 3000 tumors. Our data thus indicate that these six molecular subgroups represent well-defined clinico-biological entities of breast cancer. Their identification should facilitate the detection of novel prognostic factors or therapeutical targets in breast cancer

    Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies

    Get PDF
    High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data

    The effects of transurethral resection and cystoprostatectomy on dissemination of epithelial cells in the circulation of patients with bladder cancer

    Get PDF
    This study was undertaken to evaluate the risk of haematogenous dissemination of epithelial cells induced by endoscopic resection and/or cystoprostatectomy for transitional cell carcinoma of the bladder. Thirty-three patients were studied. Thirty-one had different stages and grades of bladder cancer and two patients had benign bladder conditions. Twenty-five cancer patients required transurethral resection of their bladder tumour. Of those, 20 had superficial disease (pTaG1–G2: n = 19; pT1G2: n = 1) and five had muscle invasive tumours (pT2G3: n = 2; pT3aG3: n = 1; pT4G3: n = 2). Five patients underwent radical cystoprostatectomy for muscle invasive cancers (pT2G3: n = 3; pT3bG3: n = 1; pT4G3: n = 1) and one man received chemotherapy for metastatic disease. Venous blood (10 ml) was obtained from the antecubital fossa in each patient, before and 1–2 h after completion of surgery, and prior to treatment in the metastatic patient. An indirect immunocytochemical technique was used to detect circulating epithelial cells after centrifugation on Ficoll gradient and fixation of mononuclear cells on slides, using a monoclonal antibody directed against three cytokeratins: CK8, CK18 and CK19. Circulating epithelial cells were detected only in the patient with metastatic disease. None of the other patients had evidence of epithelial circulating cells before or after surgery. The results suggest that irrespective of disease stage and grade, neither endoscopic nor open bladder surgery leads to detectable dissemination of urothelial cells in the peripheral circulation. These procedures are therefore unlikely to increase the risk of progression and metastasis in transitional cell carcinoma of the bladder. © 1999 Cancer Research Campaig

    Evaluation of biological pathways involved in chemotherapy response in breast cancer

    Get PDF
    INTRODUCTION: Our goal was to examine the association between biological pathways and response to chemotherapy in estrogen receptor-positive (ER+) and ER-negative (ER-) breast tumors separately. METHODS: Gene set enrichment analysis including 852 predefined gene sets was applied to gene expression data from 51 ER- and 82 ER+ breast tumors that were all treated with a preoperative paclitaxel, 5-fluoruracil, doxorubicin, and cyclophosphamide chemotherapy. RESULTS: Twenty-seven (53%) ER- and 7 (9%) ER+ patients had pathologic complete response (pCR) to therapy. Among the ER- tumors, a proliferation gene signature (false discovery rate [FDR] q = 0.1), the genomic grade index (FDR q = 0.044), and the E2F3 pathway signature (FDR q = 0.22, P = 0.07) were enriched in the pCR group. Among the ER+ tumors, the proliferation signature (FDR q = 0.001) and the genomic grade index (FDR q = 0.015) were also significantly enriched in cases with pCR. Ki67 expression, as single gene marker of proliferation, did not provide the same information as the entire proliferation signature. An ER-associated gene set (FDR q = 0.03) and a mutant p53 gene signature (FDR q = 0.0019) were enriched in ER+ tumors with residual cancer. CONCLUSION: Proliferation- and genomic grade-related gene signatures are associated with chemotherapy sensitivity in both ER- and ER+ breast tumors. Genes involved in the E2F3 pathway are associated with chemotherapy sensitivity among ER- tumors. The mutant p53 signature and expression of ER-related genes were associated with lower sensitivity to chemotherapy in ER+ breast tumors only.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Oroxylin A promotes PTEN-mediated negative regulation of MDM2 transcription via SIRT3-mediated deacetylation to stabilize p53 and inhibit glycolysis in wt-p53 cancer cells

    Get PDF
    Introduction p53 plays important roles in regulating the metabolic reprogramming of cancer, such as aerobic glycolysis. Oroxylin A is a natural active flavonoid with strong anticancer effects both in vitro and in vivo. Methods wt-p53 (MCF-7 and HCT116 cells) cancer cells and p53-null H1299 cancer cells were used. The glucose uptake and lactate production were analyzed using Lactic Acid production Detection kit and the Amplex Red Glucose Assay Kit. Then, the protein levels and RNA levels of p53, mouse double minute 2 (MDM2), and p53-targeted glycolytic enzymes were quantified using Western blotting and quantitative polymerase chain reaction (PCR), respectively. Immunoprecipitation were performed to assess the binding between p53, MDM2, and sirtuin-3 (SIRT3), and the deacetylation of phosphatase and tensin homolog (PTEN). Reporter assays were performed to assess the transcriptional activity of PTEN. In vivo, effects of oroxylin A was investigated in nude mice xenograft tumor-inoculated MCF-7 or HCT116 cells. Results Here, we analyzed the underlying mechanisms that oroxylin A regulated p53 level and glycolytic metabolism in wt-p53 cancer cells, and found that oroxylin A inhibited glycolysis through upregulating p53 level. Oroxylin A did not directly affect the transcription of wt-p53, but suppressed the MDM2-mediated degradation of p53 via downregulating MDM2 transcription in wt-p53 cancer cells. In further studies, we found that oroxylin A induced a reduction in MDM2 transcription by promoting the lipid phosphatase activity of phosphatase and tensin homolog, which was upregulated via sirtuin3-mediated deacetylation. In vivo, oroxylin A inhibited the tumor growth of nude mice-inoculated MCF-7 or HCT116 cells. The expression of MDM2 protein in tumor tissue was downregulated by oroxylin A as well. Conclusions These results provide a p53-independent mechanism of MDM2 transcription and reveal the potential of oroxylin A on glycolytic regulation in both wt-p53 and mut-p53 cancer cells. The studies have important implications for the investigation on anticancer effects of oroxylin A, and provide the academic basis for the clinical trial of oroxylin A in cancer patients
    corecore