502 research outputs found

    Hot methane line lists for exoplanet and brown dwarf atmospheres

    Get PDF
    We present comprehensive experimental line lists of methane (CH4) at high temperatures obtained by recording Fourier transform infrared emission spectra. Calibrated line lists are presented for the temperatures 300 - 1400 degC at twelve 100 degC intervals spanning the 960 - 5000 cm-1 (2.0 - 10.4 microns) region of the infrared. This range encompasses the dyad, pentad and octad regions, i.e., all fundamental vibrational modes along with a number of combination, overtone and hot bands. Using our CH4 spectra, we have estimated empirical lower state energies (Elow in cm-1) and our values have been incorporated into the line lists along with line positions (cm-1) and calibrated line intensities (S' in cm molecule-1). We expect our hot CH4 line lists to find direct application in the modeling of planetary atmospheres and brown dwarfs.Comment: Supplementary material is provided via the Astrophysical Journal referenc

    A Local Mode Study of Ring Puckering Effects in the Infrared Spectra of Cyclopentane

    Get PDF
    We report and interpret recently recorded high-resolution infrared spectra for the fundamentals of the CH2 scissors and CH stretches of gas phase cyclopentane at −26.1 and −50 ○C, respectively. We extend previous theoretical studies of this molecule, which is known to undergo barrierless pseudorotation due to ring puckering, by constructing local mode Hamiltonians of the stretching and scissor vibrations for which the frequencies, couplings, and linear dipoles are calculated as functions of the pseudorotation angle using B3LYP/6-311++(d,p) and MP2/cc-pVTZ levels of theory. Symmetrization (D5h) of the vibrational basis sets leads to simple vibration/pseudorotation Hamiltonians whose solutions lead to good agreement with the experiment at medium resolution, but which miss interesting line fractionation when compared to the high-resolution spectra. In contrast to the scissor motion, pseudorotation leads to significant state mixing of the CH stretches, which themselves are Fermi coupled to the scissor overtones

    Molecular astronomy of cool stars and sub-stellar objects

    Full text link
    The optical and infrared spectra of a wide variety of `cool' astronomical objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars, brown dwarfs and extrasolar planets are reviewed. The review provides the necessary astronomical background for chemical physicists to understand and appreciate the unique molecular environments found in astronomy. The calculation of molecular opacities needed to simulate the observed spectral energy distributions is discussed

    Line Intensities and Molecular Opacities of the FeH F4ΔiX4ΔiF^4\Delta_i-X^4\Delta_i Transition

    Full text link
    We calculate new line lists and opacities for the F4ΔiX4ΔiF^4\Delta_i-X^4\Delta_i transition of FeH. The 0-0 band of this transition is responsible for the Wing-Ford band seen in M-type stars, sunspots and brown dwarfs. The new Einstein A values for each line are based on a high level ab initio calculation of the electronic transition dipole moment. The necessary rotational line strength factors (H\"onl-London factors) are derived for both the Hund's case (a) and (b) coupling limits. A new set of spectroscopic constants were derived from the existing FeH term values for v=0, 1 and 2 levels of the XX and FF states. Using these constants extrapolated term values were generated for v=3 and 4 and for JJ values up to 50.5. The line lists (including Einstein A values) for the 25 vibrational bands with v\leq4 were generated using a merged list of experimental and extrapolated term values. The FeH line lists were use to compute the molecular opacities for a range of temperatures and pressures encountered in L and M dwarf atmospheres. Good agreement was found between the computed and observed spectral energy distribution of the L5 dwarf 2MASS-1507.Comment: 52 pages, 3 figures, many tables, accepted for publication in the Astrophysical Journal Supplement

    Laboratory spectroscopy of hot water near 2-microns and sunspot spectroscopy in the H-band region

    Get PDF
    The infrared spectrum of sunspots is analyzed in the H-band region (55406997 cm-1) with the aid of a new, hot (T = 1800 K) laboratory emission spectrum of water covering 48787552 cm-1. There are 682 lines in the sunspot spectrum and 5589 lines in the laboratory spectrum assigned quantum numbers corresponding to transitions due to H216O using a combination of previously known experimental energy levels for water and variational line lists. A further 201 unassigned lines common to both spectra can also be associated with water

    Simulation of Energetic Particle Precipitation Effects During the 2003-2004 Arctic Winter

    Get PDF
    Energetic particle precipitation (EPP) during the 2003-2004 Arctic winter led to the production and subsequent transport of reactive odd nitrogen (NOx=NO+NO2) from the mesosphere and lower thermosphere (MLT) into the stratosphere. This caused NOx enhancements in the polar upper stratosphere in April 2004 that were unprecedented in the satellite record. Simulations of the 2003-2004 Arctic winter with the Whole Atmosphere Community Climate Model using Specified Dynamics (SD-WACCM) are compared to satellite measurements to assess our understanding of the observed NOx enhancements. The comparisons show that SD-WACCM clearly displays the descent of NOx produced by EPP but underestimates the enhancements by at least a factor of four. Comparisons with NO measurements in January and February indicate that SD-WACCM most likely underestimates EPP-induced NO production locally in the mesosphere because it does not include precipitation of high energy electrons. Comparisons with temperature measurements suggest that SD-WACCM does not properly simulate recovery from a sudden stratospheric warming in early January, resulting in insufficient transport from the MLT into the stratosphere. Both of these factors probably contribute to the inability of SD-WACCM to simulate the stratospheric NOx enhancements, although their relative importance is unclear. The work highlights the importance of considering the full spectrum of precipitating electrons in order to fully understand the impact of EPP on the atmosphere. It also suggests a need for high-quality meteorological data and measurements of NOx throughout the polar winter MLT. ©2015. American Geophysical Union
    corecore