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ABSTRACT
We report and interpret recently recorded high-resolution infrared spectra for the fundamentals of the CH2 scissors and CH stretches of gas
phase cyclopentane at −26.1 and −50 ○C, respectively. We extend previous theoretical studies of this molecule, which is known to undergo
barrierless pseudorotation due to ring puckering, by constructing local mode Hamiltonians of the stretching and scissor vibrations for
which the frequencies, couplings, and linear dipoles are calculated as functions of the pseudorotation angle using B3LYP/6-311++(d,p) and
MP2/cc-pVTZ levels of theory. Symmetrization (D5h) of the vibrational basis sets leads to simple vibration/pseudorotation Hamiltonians
whose solutions lead to good agreement with the experiment at medium resolution, but which miss interesting line fractionation when com-
pared to the high-resolution spectra. In contrast to the scissor motion, pseudorotation leads to significant state mixing of the CH stretches,
which themselves are Fermi coupled to the scissor overtones.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0095010

I. INTRODUCTION

The cyclopentane molecule has unusual thermodynamic,1
spectroscopic,2–6 and dynamical properties4–7 as a result of ring
puckering. This puckering leads to a low frequency internal motion
known as pseudorotation.8,9 Motion along this, essentially barrier-
less motion, includes ten distinct “bent” conformers and ten distinct
“twist” conformers. Accurate rotational, rovibrational coupling, and
centrifugal distortion constants for this degree of freedom have been
very accurately determined by femtosecond time-resolved Raman
rotational coherence spectroscopy.7

The article by Kowalewski et al.7 provides a nice review of
previous studies as well as an excellent description of pseudorotation
in cyclopentane. The present study extends that work by developing
a theoretical model that describes how pseudorotation couples the
CH2 scissor and CH stretch vibrations. Our study is guided by
our high-resolution infrared gas phase spectra of the fundamen-
tals of these vibrations that are reported herein. The CH2 scissor
spectrum improves upon the resolution of the corresponding spec-
trum recorded by Bauman and Laane.3 Our theory also extends the

treatment of those workers who were able to describe the main fea-
tures of this spectral region with a one-dimensional particle in a ring
model of pseudorotation combined with the appropriate selection
rules.

The C–H stretch region of the infrared spectrum of most
hydrocarbons consists of many unresolved transitions in the spec-
tral region 2900–3000 cm−1. This complexity is due to multiple CH
stretch transitions from multiple conformers that are all perturbed
by Fermi resonances with first overtones and combination modes of
CH2 scissors vibrations. Over the last ten years, the Zwier and Sibert
groups10–13 have combined experiment with theory to study these
vibrations for molecules in ground and excited states for both open
and close shell systems. These molecules include phenyl groups,
which allow one to record single conformer spectra under molecular
beam conditions by infrared-ultraviolet double resonance.

More recently, we have applied these models as part of our
analysis of high-resolution infrared spectra of several molecules of
astrochemical interest. These molecules include isobutane,14

neopentane,15 and cyclohexane.16 The key feature of the model is
a set of harmonically coupled local mode CH stretches and CH2
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scissor motions combined with linear dipole moment operators.
All parameters are calculated with electronic structure methods.
To obtain spectroscopic accuracy,12 the alkyl CH stretch and CH2
scissor frequencies are scaled by the factors 0.960 and 0.975, respec-
tively, and the harmonic local modes are dressed with anharmonic
couplings that have been found to be insensitive to the level of
theory and specific stretch-bend environments.

In this article, we extend these models to include coupling
to pseudorotation motion of cyclopentane. Building on previous
work,3,7 we obtain local mode Hamiltonians describing both the
“bent” and “twist” conformers and then use symmetry to infer how
the Hamiltonians and dipole matrix elements depend on the pseu-
dorotation coordinate. These results are combined with a particle
in a ring basis set and a variational calculation to obtain vibrational
spectra. Expressing the vibrational contribution of this direct prod-
uct basis in a D5h symmetric representation leads to Hamiltonians
that take on surprisingly simple forms that allows us to interpret key
spectral features.

Both the Raman and infrared selection rules of cyclopentane
have been worked out by Mills.17 That work employs an adiabatic
representation in which a high frequency CH2 scissor normal mode
is coupled to the pseudorotation coordinate. This representation
provides an excellent zero order picture. If, however, one wants to
include the couplings between the normal coordinates, there are
disadvantages of this representation. These modes, which are close
in energy, are functions of the pseudorotation angle. This depen-
dence can lead to complex non-adiabatic effects that require careful
analysis. For example, Dawadi and Perry18 reported seven conical
intersections in the adiabatic treatment of the CH stretch normal
modes interacting with the torsional degree of freedom in methanol
in their description of the CH fundamental region of the IR spec-
trum. For this reason, we use a diabatic basis consisting of localized
modes. These modes have only minor changes in frequency and
character during the pseudorotation. Consequently, non-adiabatic
effects are small and can be neglected.

The structure of this paper is as follows: We begin by describing
the experimental methods in Sec. II. Pseudorotation in cyclopen-
tane is reviewed in Sec. III. In Sec. IV, we develop the Hamiltonian
and dipole moment operators for the CH2 scissor motions coupled
to pseudorotation. In Sec. V, we provide a parallel description for
the CH stretches coupled to the pseudorotation. Section VI includes
results and discussion. Our conclusions are presented in Sec. VII.

II. EXPERIMENTAL METHODS
The cyclopentane spectra were recorded using the same appa-

ratus and methods as used previously for cyclohexane.16 Briefly,
spectra in two regions were recorded with our high-resolution
Bruker Fourier transform spectrometer using an internal 20 cm cold
cell with wedged CaF2 windows. For the C–H stretching region, 1.47
Torr of cyclopentane at −50 ○C was used, and for the CH2 scissors,
the sample temperature was −26.1 ○C at 25.8 Torr pressure. The CH
stretching spectrum was used an InSb detector, and the resolution
was 0.02 cm−1; a HgCdTe detector was used for the CH2 region
at a resolution of 0.01 cm−1. These data were preliminary spectra
and additional spectra were subsequently recorded to determine the
infrared absorption cross sections.19

III. PSEUDOROTATION
There are two nonequivalent structures involved in the pseu-

dorotation of cyclopentane.1,3,7 These structures are referred to as
the “bent” and “twist” structures, and two representative conformers
are shown in Fig. 1. These structures are similar to those of the
D5h geometry and can be thought of as distortions from that higher
symmetry geometry.

If the z-axis is taken as the fivefold rotation axis, and the carbon
atoms ordered 1–5 as one moves around the ring in the clockwise
direction with carbon atom 1 situated on the positive y-axis, then
the stable, lower symmetry conformers can be distinguished by the
distortion of the carbon atoms out of the x, y plane of the molecule.

Following the earlier work of Kowalewski et al.,7 the ring
diagrams of Fig. 2 illustrate these distortions as one moves along
the pseudorotation coordinate ϕ. The distinct “bent” and “twist”
structures are labeled as b±n and t±n , where n runs from 1 to 5. The
definition of ϕ follows from the recognition1 that the progression
through the structures of Fig. 2 can be modeled as

zk = (
2
5
)

1/2
q cos(4π

5
(k − 1) + 2ϕ), (1)

where zk is the out-of-plane displacement coordinate of the kth
carbon atom as numbered in Fig. 1. The radial coordinate q describes
the amplitude of the out-of-plane puckering. Two dimensional plots
V(q,ϕ) indicate that these two coordinates are weakly coupled.3,7

Consequently, pseudorotation can be modeled assuming q = qe.1,3,7

The motion along the pseudorotation coordinate ϕ is essentially
barrierless3,7 and can be modeled with a one-dimensional particle in
a ring Hamiltonian. The resulting eigenvalues

Erot = Bϕℓ
2 (2)

are described by the quantum numbers ℓ = 0,±1,±2, . . . ,±∞. The
value of Bϕ has been determined to be 2.8 cm−1 by femtosecond
time-resolved Raman rotational coherence spectroscopy.7 Bauman
and Laane3 consider modifications of this formula in the presence
of coupling to the radial coordinate q. These correction terms are
beyond the scope of the current work.

FIG. 1. Plot of the “bent” b+1 and “twist” t+1 structure showing the numbering
scheme for the H atom and the equatorial and axial environments of the CH1 and
CH2 stretches, respectively. The carbon atoms are numbered 1–5 (not shown)
clockwise with atom 1 at the top. Structures are calculated at the B3LYP/6-
311++(d,p) level of theory with the “bent” being 0.9 cm−1 more stable than the
“twist” conformer.
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FIG. 2. The fluctuations of the H1,1 matrix elements for the CH2 scissor mode
associated with carbon 1 plotted as a function of the pseudorotation angle ϕ. Its
average value is a0,0. The conformations are shown below as a function of ϕ. The
top atom is carbon 1 with the remaining increasing in a clockwise direction. The
blue circles have positive z values, red circles have negative z values, and black
circles are z = 0. The crosses correspond to local mode results at each of the 10
equilibrium b±n and transition state t±n geometries (n = 1–5). The above labeling
follows the notation of Kowalewski et al.7

Despite the fact that motion along this coordinate is barrier-
less, there are interesting structural changes. As an example, the H1
and H2 atoms for the b+1 geometry of Fig. 1 are approximately in
the equatorial and axial positions. However, after a pseudorotation
of 180○ these positions are flipped. In this study, we build on these
concepts to create scissor and stretch Hamiltonians and dipoles as
functions of the angle ϕ and then couple them to particle in a ring
states associated with pseudorotation.

IV. CH2 SCISSOR VIBRATIONS
We begin by focusing on the form of the coupling between

the scissor and pseudorotation modes. The goal is to express the
coupling in a form that allows for transparent expressions for the
Hamiltonian matrix elements in a direct product representation.

A. Hamiltonian
Following our earlier works we describe the scissors and

stretches using a localized representation of the vibrations.12,14,20,21

The Reiher et al.22,23 realized that, for molecules for which there are
a number of characteristic bands consisting of close-lying delocal-
ized normal modes, one can carry out an orthogonal transformation
of these select modes and obtain a new set of modes that describe
spatially localized vibrations. The localization can be carried out in
several ways,22–27 but we have found that, for CH stretches and CH2
scissors, the results are insensitive to the details of the localization.
Our localization approach21 requires a single mass scaling parameter
that allows us to construct an intermediate set of normal modes in
which spatial localization of vibrations is achieved by scaling select
atomic masses by a factor of γ. Details of this method are described
in the work of Sibert21 and not repeated here. The starting point of
the approach is a Hessian calculated with the Gaussian suite28 at the
B3LYP/6-311++(d,p) level of theory. Localizing the scissor modes

for the b+1 conformer, shown in Fig. 2, leads to the following 5 × 5
scissor Hamiltonian matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1497.2 5.3 5.0 5.0 5.3

5.3 1499.0 7.7 2.6 6.6

5.0 7.7 1502.8 10.4 2.6

5.0 2.6 10.4 1502.8 7.7

5.3 6.6 2.6 7.7 1499.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3)

The above results were calculated with γ = 2.3, but γ values between
1.8 and 2.8 lead to changes of the above matrix elements by less than
0.005 cm−1. Based on the b+1 geometry of Fig. 2, one expects modes 2
and 5 to have the same frequencies. Likewise, modes 3 and 4 should
have identical frequencies. The above Hamiltonian is consistent with
those expectations.

Our work relies on a matrix representation rather than coordi-
nates. We note that the matrix approach approximates the normal
mode treatment; the off-diagonal quadratic terms in the local coor-
dinates, which lead to the above off-diagonal elements in the matrix
representation, also lead to couplings between states with three total
quanta of scissor excitation. Since the energy differences between
these states and the fundamentals is large compared to the couplings,
the neglect of these off-resonant couplings is small, and we ignore
them. Diagonalization of the above matrix leads to the eigenvalues
Ei that agree with the Gaussian frequency results28 to with 0.2 cm−1.
This excellent agreement justifies our approximation of the eigen-
functions of localized matrix representation being equivalent to the
normal modes.

An important feature of the above Hamiltonian is that the off-
diagonal elements are comparable to the energy differences between
the diagonal elements. As a result, the eigenfunctions of the above
matrix will depend sensitively on all the elements of the matrix. As
the molecule undergoes pseudorotation, all these elements change,
and hence the normal modes will also change. One can define the
normal modes as functions of the pseudorotation angle17 follow-
ing an adiabatic separation of the low frequency pseudorotation
and high frequency scissor vibrations, but one may still need to
include nonadiabatic couplings between the closely spaced scissor
states. We will see that this is certainly the case for the CH stretches
of cyclopentane. The adiabatic approach18,29 has proven successful
in the treatment of the CH stretch normal modes interacting with the
torsional degree of freedom in methanol. However, these approaches
require that one is careful with geometrical phases, due to the
presence of conical intersections.

The pseudorotation shown in Fig. 2 leads to equivalent struc-
tures, and, hence, the Hamiltonian matrices for all of the b±n struc-
tures can be constructed from Eq. (3) by keeping track of the
equivalent structures. For example, the value of the H11(ϕ) matrix
element, which is 1497.2 cm−1 for the ϕ = 0 b+1 structure, is equal
1502.8 cm−1 for ϕ = 2π/5. At this angle, the molecule has the b+3
geometry, and, based on Fig. 2, the H11 element of this conformer
is equivalent to the H44 element of the b+1 conformer. This informa-
tion, when combined with the matrices associated with the “twist”
geometries, allows us to construct Hamiltonian matrices for all the
conformers shown in Fig. 2.
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The top panel of Fig. 2 shows the ϕ dependence for the varia-
tion of the H1,1 elements. The simple cosine dependence is clearly
evident. A least squares fit with a cosine series,

H1,1(ϕ) = a0,0 +
1
2

2

∑
n=1

a0,n cos(2inϕ), (4)

is shown as the solid red line; the agreement is excellent. The expan-
sion coefficients have two subscripts. The significance of the leading
subscript will become apparent when we consider off-diagonal
elements. The values of the fit coefficients, calculated at the
B3LYP/6-311++(d,p) level of theory, are shown in Table I, as well
as select results for an MP2 calculation with a larger basis set. Those
couplings follow the same patterns for both calculations. The biggest
difference is the a0,0 term that is scaled in our work.

Generalizing the above ideas, the elements of the 5 × 5 scissor
Hamiltonian matrix can be described using

Hk,k′(ϕ) =
1
2

2

∑
n=0

aj,n[e2inϕ f −n
k f −n

k′ + c.c.], (5)

where j = ∣k′ − k∣ and

fk ≡ ei(k−1)ϕ10 , (6)

with ϕ10 = 2π/10. The exponential form of the ϕ dependence of the
expansion allows for easy evaluation of the particle in a ring matrix
elements employed to treat pseudorotation degree of freedom.

One can rationalize the form of Eq. (5) by first recognizing that
for the H1,1 element this equation is that of a Fourier expansion in
the angle ϕ. The remaining diagonal elements are written by shifting
the origin of the expansion. As an example, the H2,2 is written as a
Fourier expansion in terms of angle (ϕ − ϕ10).

Given the fivefold cyclic symmetry of this molecule, it is
convenient to work in a symmetrized basis ψℓv , expressed as

ψℓv =
5

∑
j=1

Uℓv ,jχj, (7)

TABLE I. Expansion coefficients for the scissor Hamiltonian in wavenumbers (cm−1)
[see Eq. (5)].

j aj,0 aj,1 aj,2

B3LYP/6-311++(d,p)

0 1500.160 −3.327 0.366
1 7.256 −2.648 0.410
2 4.353 2.168 0.070
3 4.353 −2.168 0.070
4 7.256 2.648 0.410

MP2/cc-pVTZ

0 1506.32 −3.94 0.09
1 7.46 −3.05 0.73
2 4.44 2.41 0.11

where

Uℓv ,k = exp[iℓv(k − 1)ϕ5]/
√

5 = f 2ℓv
k /
√

5, (8)

where ϕ5 ≡ 2π/5. Here, the χj are the localized scissor modes. With
this definition the symmetrized Hamiltonian takes the form

ℋ = U∗H UT. (9)

The symmetrized representation leads to a diagonal Hamiltonian
matrix for the D5h scissor Hamiltonian. These states are labeled with
the quantum number ℓv that runs from −2 to 2. States with ℓv = ±2
have e′2 symmetry, states with ℓv = ±1 have e′1 symmetry, and the
state with ℓv = 0 has a′1 symmetry.

If we use the notation cn ≡ exp[inϕ], we can express the Hamil-
tonian in the compact form

ℋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h11 h12c2 h13c4 h14c∗4 h15c∗2
h21c∗2 h22 h23c2 h24c4 h25c∗4
h31c∗4 h32c∗2 h33 h34c2 h35c4

h41c4 h42c∗4 h43c∗2 h44 h45c2

h51c2 h52c4 h53c∗4 h54c∗2 h55,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (10)

where

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1491.1 −2.6 0.3 −0.1 3.2

−2.6 1497.6 −3.1 0.7 −0.1

0.3 −3.1 1523.4 −3.1 0.3

−0.1 0.7 −3.1 1497.6 −2.6

3.2 −0.1 0.3 −2.6 1491.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (11)

The form of this Hamiltonian allows for ready evaluation of the
Hamiltonian matrix in a product basis of symmetrized scissor states
and pseudorotation states Φℓ(ϕ) = exp[iℓϕ]/

√
2π. Using Eqs. (10)

and (11), these elements are

⟨ℓv, ℓ + 2j∣ℋ ∣ℓv′ , ℓ⟩ = ⟨ℓ + 2j∣ℋ ℓv ,ℓ′v ∣ℓ⟩ = hℓv ,ℓ′vδℓt ,ℓ′t . (12)

Here, ℓt = mod(2ℓv + ℓ, 5) is a symmetry label. States with different
values of ℓt cannot couple. We will see below that the value of ℓt
partially distinguishes the vibration/pseudorotation symmetry.

We consider two examples to clarify the form of the Hamilto-
nian. If one considers the elements ℓ′ = ℓ, then j = 0 and the only
nonzero terms are the diagonal terms

⟨ℓ∣ℋ ℓv ,ℓ′v ∣ℓ⟩ = hℓv ,ℓv. (13)

As a second example, consider the evaluation of the coupling
between two states with lt = 4,

⟨−2∣ℋ −2,2∣0⟩ = 3.2 cm−1. (14)

Note that the {−2, 2} elements corresponds to h15 in Eq. (11).
In summary, the Hamiltonian of Eq. (10) combined with the

particle in a ring contribution of Eq. (2), allows one to solve for
the scissor/pseudorotation eigenstates. The specific values of the
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elements are derived from the density functional theory (DFT)
calculations described above where the input data are calculations
on one “bent” and one “twist” conformer. The eigenvalues are con-
verged by increasing the maximum magnitude of the ℓ quantum
numbers that are included in the direct product basis. We chose an
upper limit of ℓ = ±18 based on thermal accessibility; this value leads
to a basis of 185 functions. An examination of the eigenfunctions,
shows that in all cases one can accurately describe the eigenstates
with fewer than four basis functions, so one could use much smaller
basis sets.

B. Dipoles
The ϕ-dependent dipole matrix elements are determined

following similar considerations as those for generating the Hamil-
tonian. The dipoles for the local scissors of the b+1 conformer are
reported in Table II. These values are the values of the matrix
elements μiα = ⟨0∣μα∣χi⟩ that couple the ground state to the local
mode states of Eq. (3). We calculate the intensities (km/mol) for each
conformer as

Ij =∑
α
∣⟨0∣μα∣Ψj⟩∣2Ej. (15)

Here, Ej (cm−1) and Ψj are the eigenvalues and eigenvectors of H of
Eq. (3). The missing constants in the above expression are included
in our units of the dipole matrix elements that have dimensions√

km/mol/cm−1. The dipole matrix elements are obtained as

⟨0∣μα∣Ψj⟩ =
5

∑
i=1
⟨0∣μα∣χi⟩⟨χi∣Ψj⟩. (16)

The resulting Ej and Ij, reported in Table II, agree closely with
the results of Gaussian28 with the intensities agreeing to within
0.01 km/mol.

The dipole components for the first scissor mode are shown
as a function of ϕ in Fig. 3. Also shown are fits to these results.
The x and y components are fit as constants, with the former hav-
ing a value of zero and the latter having a value of dy0 = −0.032 78.
The z-axis component, to a good approximation, can be fit as μ1z
(ϕ) = dz1 cos(ϕ) with dz1 = −0.038 32. A striking feature of these
results is that the y-component only has a weak ϕ dependence.

TABLE II. Dipole matrix elementsa of local scissors for the b+1 conformer along with
scissor excitation energies (cm−1) and intensities Ij (km/mol).

i μix μiy μiz

1 0.0000 −0.0326 −0.0350
2 −0.0311 −0.0093 0.0323
3 −0.0185 0.0275 −0.0150
4 0.0185 0.0275 −0.0150
5 0.0311 −0.0093 0.0323

j 1 2 3 4 5

Ej 1487.3 1492.8 1497.5 1499.1 1524.2
Ij 0.25 4.76 3.67 4.81 0.18

aElements have dimensions (km/mol)1/2/cm−1 . See text and Eq. (15) for details.

FIG. 3. The linear dipole matrix elements for the scissor mode 1 as a function of
the pseudorotation angle ϕ. Points correspond to conformers in Fig. 2. The lines
correspond to linear least squares fits. Matrix elements are scaled to have units√

km/mol/cm−1; see text following Eq. (15) for details.

The ϕ dependencies of the remaining dipoles are determined by
tracking the equivalencies of environments as a function of ϕ and the
orientation of CH2 groups as one moves around the cyclopentane
ring. We find

μxk = dy0 sin[2(k − 1)π/5],
μyk = dy0 cos[2(k − 1)π/5],

μzk = (−1)k−1dz1 cos[ϕ − (k − 1)π/5].
(17)

These matrix elements take on a simpler form using the
definition of fk in Eq. (6) and using the dipole operators μ± = (μy

± iμx)/
√

2. We find

μ±,k = 2−1/2dy0 f ±2
k

μz,k = (−1)k−1dz1[eiϕ f ∗k + e−iϕ fk]/2.
(18)

The corresponding elements in the symmetric basis of Eq. (8) are
evaluated using the identities

5

∑
k=1
[Uℓv ,k]∗ f 2j

k =
√

5δℓv ,j, (19)

5

∑
k=1
(−1)k−1[Uℓv ,k]∗ f ±1

k =
√

5δℓv ,∓2. (20)

The nonzero elements are

⟨ψ±1∣μ∓∣ψgs⟩ = (5/2)1/2dy0,

⟨ψ±2∣μz ∣ψgs⟩ = (5/4)1/2dz1e±iϕ. (21)

This result is consistent with previous works3,17 describing the
scissor fundamentals in which the z component of the dipole leads
to Δℓ = ±1 transitions.

V. CH STRETCHES
Our modeling of the CH stretches follows that of the CH2

scissor modes. We begin by constructing the 10 × 10 localized CH
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stretch Hamiltonian matrices of the b+1 and t+1 structures. We next
determine the ϕ-dependent elements of a more general 10 × 10
matrix H by tracking equivalencies as a function of pseudorotation.
The resulting Hamiltonian is symmetrized and expressed in a form
that allows for straightforward evaluation of matrix elements in a
direct product basis set of CH stretches and pseudorotation degrees
of freedom. As a last step, we describe the form of the dipole
moments.

A. CH stretch Hamiltonian matrix
To keep track of the equivalent environments, we number the

H atoms 1–10 in a clockwise fashion, as shown in Fig. 1. The ϕ = 0
geometry of this molecule is shown at the left in Fig. 1. The local
mode CH stretch Hamiltonian matrix of the b+1 structure is written
as H evaluated at ϕ = 0. For this structure, the local stretch frequen-
cies of CH1 and CH2 are 3062.4 and 3021.4 cm−1, respectively, at the
DFT level we have used throughout. The two environments are rem-
iniscent of the equatorial and axial geometries of cyclohexane, with
the equatorial corresponding to the higher frequency vibration.

Tracking the ϕ dependence of the matrix element follows the
same consideration as the scissor modes. From Fig. 2, we see that a
local scissor frequency is the same at ϕ = 0 and π. In contrast, the
two CH stretch environments are switched for the b−1 structure. As
a result, H1,1(ϕ = π) = 3021.4 cm−1. To maintain equations similar
to those for the scissors, it is convenient to introduce an array that
tracks the equivalent CH stretches with successive pseudorotation

b = {1, 4, 5, 8, 9, 2, 3, 6, 7, 10}. (22)

The use of this array is not needed for the scissors, since after a rota-
tion of ϕ = π one has completed a cycle of the five scissor modes. In
contrast, for the stretches for ϕ = π, hydrogen H2 is in an equivalent
environment to that of H1 at ϕ = 0. The use of this array leads to

Hbk ,bk′
(ϕ) = 1

2

2

∑
n=0

sj,n[einϕ f −n/2
k f −n/2

k′ + c.c.], (23)

where j = ∣k′ − k∣. This result has the same form as the scissor Hamil-
tonian of Eq. (5). The fit coefficients sj,n are shown in Table III.
The points correspond to matrix elements of the “bent” and “twist”
geometries, and the fit is shown as a solid line (see Fig. 4). The large
difference in the diagonal matrix elements (n = 1) at ϕ = 0 and π
is due to the above-mentioned switch between axial and equatorial
geometries.

The stretch Hamiltonian takes a simpler form in a D5h sym-
metrized basis. We transform to this basis using the complex
representation

ψ(s/a)ℓv
=

10

∑
k=1

Us/a
ℓv ,kχk, (24)

where the χk are the local stretch basis functions. The matrix
elements are

Us/a
ℓv ,bk
= (σs/a)k−1 f 2ℓv

k /
√

10, (25)

where σs/a = ±1. The ± is for the linear combinations of the sym-
metric and asymmetric CH2 stretches, respectively, on each of the

TABLE III. Expansion coefficients sj,n for the CH stretch Hamiltonian in wavenumbers
(cm−1) [see Eq. (23)].

j sj,0 sj,1 sj,2

0 3049.356 79 21.345 33 −8.029 96
1 −3.052 51 6.066 20 −0.029 90
2 1.136 04 −0.403 87 0.413 72
3 0.472 83 0.558 75 0.033 10
4 7.295 93 −0.474 54 1.762 96
5 −16.275 46 −0.000 00 1.172 09
6 7.295 93 0.474 54 1.762 96
7 0.472 83 −0.558 75 0.033 10
8 1.136 04 0.403 87 0.413 72
9 −3.052 51 −6.066 20 −0.029 90

five carbon atoms. As was the case for the scissor modes, the ℓv val-
ues run from −2 to 2. For the symmetric states the ±ℓv pairs have e′ℓv

symmetry, and the ℓv = 0 states have a′1 symmetry. For the asymmet-
ric states the ±ℓv pairs have e′′ℓv

symmetry and the ℓv = 0 states have
a′′2 symmetry.

Transforming the Hamiltonian of Eq. (23) to the symmetrized
Hamiltonian, analogous to that of the scissor Hamiltonian of
Eq. (10), leads to

ℋ s,s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3027 −4c2 0 0 −2c∗2
−4c∗2 3033 −6c2 0 0

0 −6c∗2 3045 −6c2 0

0 0 −6c∗2 3033 −4c2

−2c2 0 0 −4c∗2 3027

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (26)

FIG. 4. Plot of the deviations of the H1,n matrix elements from the average values
plotted as a function of the pseudorotation angle. The ϕ = 0 structure is shown at
the left of Fig. 1. The order of the n values follows the element of the array b in
Eq. (22). The least squares fit, whose results are reported in Table III, takes the
form of Eq. (23).
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ℋ a,a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3049 −3c2 0 0 −1c∗2
−3c∗2 3071 −5c2 0 0

0 −5c∗2 3088 −5c2 0

0 0 −5c∗2 3071 −3c2

−1c2 0 0 −3c∗2 3049

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (27)

ℋ s,a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 4c∗1 8c1 0

−1c3 0 0 10c∗1 14c1

16c1 0 0 0 16c∗1
14c∗1 10c1 0 0 −1c∗3

0 8c∗1 4c1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (28)

These matrices are reported with additional significant figures in the
supplementary material.

The stretch Hamiltonian, when combined with the particle in a
ring states of the pseudorotation degree of freedom, leads to matrix
elements of the same form as those for the scissors given in Eq. (12).
All diagonal terms are subsequently scaled by 0.9609. This value has
been increased from the 0.960 value used in our localized model of
CH stretches12 to better match with the experimental results for the
most intense high energy feature of the spectrum.

B. CH stretch dipoles
The dipole matrix elements μ1α for CH1 are shown in Fig. 4 as

a function of ϕ. Also shown are the results of the least squares fits,

μ1x =
2

∑
n=1

d(x)n sin(nϕ),

μ1y =
2

∑
n=0

d(y)
n cos(nϕ), (29)

μ1z =
2

∑
n=0

d(z)n cos(nϕ),

for each of the components. The coefficients are given in Table IV.
The ϕ dependence of the dipole matrix elements of the remain-

ing CH stretches is determined as it was for the scissor modes, and
details are included in the supplementary material. Combining a
symmetrized representation with the dipole matrix elements

μ±k = [μky ± iμkx]/
√

2 (30)

leads to the results of Table V. The selection rules are relatively
simple. Both DFT and MP2 levels of theory are reported. The ratios
of the two most intense transitions are similar for the two levels of
theory, with the DFT ration value of 1.33 being slightly larger than
the 1.19 MP2 ratio.

In contrast to the scissor modes, the perpendicular transitions
have ℓ = 0. Here, there are additional Δℓ = ±1,±2 vibrational transi-
tions. The full stretch/pseudorotation symmetry leads to the result
that only Δℓt = ±2 perpendicular transitions are allowed. We will
return to a more detailed discussion of these results in Sec. VI.

TABLE IV. Dipole expansion coefficientsa for Eq. (29).

α d(α)0 d(α)1 d(α)2

x 0.008 34 −0.005 76
y −0.080 13 −0.044 04 0.007 22
z 0.065 36 −0.047 23 −0.001 26

aDimensions are (km/mol)1/2/cm−1 .

C. Overtones and combination bands
The correct description of the CH stretch fundamentals

requires the inclusion of the overtones and combination states of the
scissor modes due to their near degeneracy with the stretches and
the large Fermi coupling coefficients. Since we know the diagonal
and off-diagonal elements of the 5 × 5 matrix describing a single
quantum of excitation, we can follow the properties of harmonic
oscillators and their matrix elements and generate the 15 × 15 local
mode Hamiltonian matrix.

In order to exploit symmetry, we divide these 15 states
into three groups. The first group includes the states with single
excitation on neighboring groups. These five states

∣1, 1, 0, 0, 0⟩, ∣0, 1, 1, 0, 0⟩, . . . , ∣1, 0, 0, 0, 1⟩ (31)

are written as ∣χ(1)k ⟩ with k = 1–5. The second set of states

∣1, 0, 1, 0, 0⟩, ∣0, 1, 0, 1, 0⟩, . . . , ∣0, 1, 0, 0, 1⟩ (32)

are written as ∣χ(2)k ⟩ with k = 1–5. The final set are the five overtones
∣χ(3)k ⟩, which are

∣2, 0, 0, 0, 0⟩, ∣0, 2, 0, 0, 0⟩, . . . , ∣0, 0, 0, 0, 2⟩. (33)

These 15 basis functions lead to a scissor matrix consisting of nine
5 × 5 sub-matrices Hm,m′ . Here, the superscripts correspond to the
three different types of doubly excited states.

The ϕ dependence of the symmetrized Hamiltonians is deter-
mined numerically. At various angles ϕ, we construct the local mode
Hamiltonian and transform to the symmetrized representation. We
find that the symmetrized Hamiltonians ℋ m,m′

ℓv ,ℓ′v
all have the same ϕ

dependence as the one quantum states of Eq. (10).

TABLE V. Nonzero CH stretch dipole matrix elementsa written as a product fg.

Element f b f c g

⟨ψa
0 ∣μz ∣ψgs⟩ 0.2067 0.1642 1
⟨ψs
±2∣μz ∣ψgs⟩ −0.0747 −0.0666 e±iϕ

⟨ψs
−1∣μ+∣ψgs⟩ −0.1792 0.1504 1
⟨ψa
−2∣μ+∣ψgs⟩ −0.0586 −0.0521 eiϕ

⟨ψa
−1∣μ+∣ψgs⟩ −0.0399 −0.0347 e−iϕ

⟨ψs
0∣μ+∣ψgs⟩ 0.0145 0.0138 e2iϕ

⟨ψs
2∣μ+∣ψgs⟩ 0.0016 0.0018 e−2iϕ

aDimensions are (km/mol)1/2/cm−1 .
bB3LYP/6-311++(d,p).
cMP2/cc-pVTZ.
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The transformation to symmetrized basis for the overtones is
that same as that for the fundamentals [see Eq. (8)]. However, the
combination bands require a phase shift

Um
ℓv ,k = exp[i(ℓv(k − 1) + δ)ϕ5]/

√
5, (34)

where δ = 0.5 and 1.0 for the m = 1 and 2 ∣χ(m)k ⟩ states, respectively.
The ℋ m,m′ matrices are provided in the supplementary material.
The symmetrized basis states are denoted ∣ψ(m)ℓv

⟩, where the m = 1–3
denotes the group and serves to distinguish them from the stretch
states that have the same form but are labeled with a (s/a)
superscript.

The overtones are coupled to the CH fundamentals via Fermi
coupling. In a previous work, the matrix element describing the
coupling between a CH local mode and a contiguous local CH2
scissor overtone was found to take a valve of VF ≈ 22 cm−1.12 That
value is used here. In the symmetrized representation used herein,
only the symmetric CH stretches are coupled and the coupling
elements are

⟨ψ(s)ℓv
∣V ∣ψ(3)ℓ′v

⟩ =
√

2VFδℓv ,ℓ′v. (35)

D. Symmetry
In Table VI, we provide symmetry labels for direct product

basis functions ∣ℓ(s/a)v , ℓ⟩. The symmetry of both the CH2 scissor
states and the symmetric CH stretch states are determined by their
values of ℓv, so the scissor states are not included in our discussion
of symmetry. The coupling connectivity allows one to determine
the symmetry of any state based on the states that are included. As
noted above, the ℓt value determines the symmetry label subscript.
The a states have ℓt = 0, otherwise the state is doubly degenerate. The
prime and double primed states are distinguished by the σh reflec-
tion symmetry. The degenerate states ∣ℓa

v , ℓ⟩ have prime or double
prime symmetry depending on whether ℓ is odd or even, respec-
tively. States ∣ℓs

v, ℓ⟩ have prime or double prime symmetry depending
on whether ℓ is even or odd, respectively. The symmetries a′2 and a′′1
are distinguished by the C2 operation. Under this operation, sin(5ϕ)
goes to −sin(5ϕ), ψs

0 goes to ψs
0, and ψa

0 goes to −ψa
0 ; consequently,

we can designate the states as shown in Table VI.

TABLE VI. Symmetry designation of the vibration/pseudorotation basis.

ℓt Symmetry State 1 State 2

0 a′1 ψs
0 ψa

2eiϕ + ψa
−2e−iϕ

0 a′′2 ψa
0 ψs

2eiϕ + ψs
−2e−iϕ

0 a′2 ψs
0 sin(5ϕ) ψs

2eiϕ − ψs
−2e−iϕ

0 a′′1 ψa
0 sin(5ϕ) ψa

2eiϕ − ψa
−2e−iϕ

1,4 e′′2 ψs
0eiϕ ψs

0e−iϕ

1,4 e′2 ψa
0eiϕ ψa

0e−iϕ

2,3 e′1 ψs
0e2iϕ ψs

0e−2iϕ

2,3 e′′1 ψa
0e2iϕ ψa

0e−2iϕ

VI. RESULTS
We first present results for the scissor fundamentals and then

the CH stretches. We calculate spectra with and without rotations
included. We include the rotational contribution for each vibra-
tional transition by replacing the line with a rotational line shape.
These line shapes, shown in Fig. 5, are obtained for parallel and
perpendicular transitions of an oblate symmetric top in which we
use the average of the A and B rotational constants reported in
Table VII. We assume a Boltzmann distribution of pseudorotation
states with a temperature of −26.1 ○C for the CH2 scissor funda-
mentals and T = −50.0 ○C for the CH stretch fundamentals, and
these values corresponding to the temperature of the experiments.
All other vibrational modes are assumed to be unpopulated.

Our spectral results for the scissor fundamentals are reported
in Fig. 6. For all these spectra, we have scaled the scissor frequen-
cies by 0.975. This scaling was determined empirically in earlier
works.12,21 The top panel shows results for which the symmetrized
scissor modes are decoupled from the pseudorotation by setting
the off-diagonal terms in Eq. (11) to zero. The resulting spectrum
follows from Fig. 3 where the angular dependence of the scissor
dipole is shown. The lack of ϕ dependence for the perpendicular
dipole matrix element leads to Δℓ = 0 vibrational transitions, as is
evident from Eq. (21). This property of the dipole in turn leads
to a large intensity buildup of 7.8 km/mol due to the overlapping
perpendicular transitions at 1460.1 cm−1. This wavenumber value
is the scaled value of the 1497.6 cm−1 matrix elements associated
with the ψ

±1 symmetrized scissor states of Eq. (11). The intensity
is similar to the Gaussian intensity of 9.3 km/mol for the e′1 CH2
scissor normal mode, obtained at an energy minimized structure
constrained to have D5h symmetry with the B3LYP/6-311++(d,p)
level of theory.28 We use the previously determined Bϕ = 2.8 cm−1

value7 for the ground and excited scissor states. This value is

FIG. 5. Plot of components of the CH1 stretch dipole matrix elements ⟨0∣μα∣χ1⟩ as
a function of the pseudorotation angle ϕ. The fit lines are given in Eq. (29). Matrix
elements are scaled to have units

√
km/mol/cm−1; see text following Eq. (15) for

details.
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TABLE VII. Rotational constants (GHz) obtained from B3LYP/6-311++(d,p) level
calculation of the b+1 structure.

A Ba C
6.466 82 6.465 37 3.726 16
aThe experimental value is B = 6.484 93 GHz.7

important for the parallel vibrational transitions. These transitions
are dominated by Δℓ = ±1 transitions that result from the cosine
behavior of the scissor dipole matrix elements observed in Fig. 3.
These transitions are centered at 1453.8 cm−1, a value that follows
from the scaled 1491.1 cm−1 matrix elements associated with the ψ

±2
symmetrized scissor states of Eq. (11).

In Fig. 6(b), we show model results for the scissor/
pseudorotation contributions to the Hamiltonian. The similarity in
structure of panels (a) and (b) is due to the small size of the off-
diagonal couplings in Eq. (11). The most profound effects are found
for the small ℓ states at the center of the spectra. Here, the sizes of
the off-diagonal elements in Eq. (11) are comparable to the spac-
ings between the pseudorotation levels so that resonant couplings
are present. For the larger ℓ states, the spacings between the pseu-
dorotation levels increase and the coupled states are no longer nearly
resonant.

The theoretical spectrum of Fig. 7 is the result of convoluting
each of the vibrational transitions of Fig. 6(b) with the appropriate
rotational vibrational profile of Fig. 5. One sees that any structure
in the perpendicular vibrational transitions is lost due to the large
width of the rotational vibrational profile. In contrast, the parallel
vibrational transitions are characterized by sharp Q-branch tran-
sitions. Also shown in Fig. 7 are the experimental results. One

FIG. 6. Rotational vibrational profiles (a) perpendicular and (b) parallel transitions
of an oblate symmetric top with rotational constants of Table VII. The Q-branch
transitions in (b) owe their intensities to many overlapping transitions. Individual
lines are broadened by Gaussians exp[−(I − Io)/σ2] with σ = 0.25 cm−1.

FIG. 7. Theoretical impulse plot spectra for CH2 scissor fundamentals comparing
the pure vibrational spectrum with (a) no coupling and (b) coupling to the pseu-
dorotation degree of freedom. The perpendicular transition in (a) at 1460.1 cm−1

has an intensity of 7.8 km/mol. The temperature is −26.1 ○C.

can see that our theory captures the main spectral features includ-
ing the ones near the center that are due to scissor/pseudorotation
couplings.

The model predicts that, for larger values of ℓ, there is little
coupling between the scissors and the pseudorotation degrees of
freedom. As a result, it predicts a sequence of evenly spaced lines
with a spacing of approximately 2Bϕ [see Eq. (2)] as described
previously in the work of Bauman and Laane.3 In contrast, if we
look more closely at the wings of the experimental spectrum that
corresponds to transitions to larger ∣ℓ∣ values shown Fig. 8, we see
that there is substantial fractionation of the lines even beyond that
which was observed by Bauman and Laane.3 Our work does not
address the origins of the mixing, but those authors speculated
that Coriolis coupling maybe responsible for the observed state
mixing. A low-resolution experimental spectrum is provided to
highlight the underlying pattern of equally spaced transitions as
well as the extensive state mixing observed at the high-spectral
resolution of the experiment. The best our model can do is cap-
ture these low-resolution features as shown by the impulses in this
figure. Table VIII compares the experimental and theoretical results.
The nondegenerate states are those for which lt = 0. All states in the
table correspond to excitation of the ψ2 scissor state except where
noted.

In contrast to the scissor spectrum, in which the parallel tran-
sitions are to a good approximation Δℓ = ±1 and the perpendicular
transitionsΔℓ = 0, the CH stretch excitation is predominantlyΔℓ = 0
transitions for both the symmetric and asymmetric stretches. This
feature is evident in the dipole matrix elements reported in Table V
where the two leading terms have no ϕ dependence and correspond
to excitation of the stretch states ψa

0 and ψs
±1. The former is a parallel

transition (observed near 2966 cm−1), and the latter a perpendicu-
lar transition (observed near 2880 cm−1). These states have a′′2 and
e′1 symmetries, respectively. The transitions are the expected allowed
transitions for a molecule with D5h symmetry.

To highlight the role of the dipole selection rules, in Figs. 9(a)
and 9(b), we show a spectrum for the CH stretch Hamiltonian for
which we have decoupled the stretches from the pseudorotation by
setting the off-diagonal terms to zero in Eqs. (26)–(28). We also turn
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FIG. 8. Comparison of experiment and
theory. The temperature is −26.1 ○C.
Theoretical intensities are scaled to
match experiment. Individual lines
are broadened by Gaussian functions
exp[−(I − Io)/σ2] with σ = 0.25 cm−1.

off the Fermi coupling to the scissor overtones. In this limit, the
symmetric and antisymmetric manifolds of states are decoupled, and
we can consider the spectral contributions of these states in (a) and
(b), respectively.

Focusing on just the transitions to the symmetric stretch
manifold of states shown in Fig. 9(a), one finds a spectrum similar

TABLE VIII. Comparison of the most intense experimental (low-resolution) and
theoretical scissor transition energies (cm−1) for the parallel transitions.

Expt. Model Intensity E (upper) ℓ′ ℓ

1384.7 1383.6 0.022 1856.8 13 12
1392.4 1389.2 0.033 1792.4 12 11
1397.8 1394.8 0.048 1733.6 11 10
1402.6 1400.4 0.068 1680.4 10 9
1407.7 1406.0 0.093 1632.8 9 8
1412.0 1411.6 0.122 1590.8 8 7
1417.1 1417.2 0.154 1554.4 7 6
1422.4 1422.8 0.188 1523.6 6 5
1428.4 1428.47 0.110 1498.5 5 4a

1428.53 0.109 1498.5 5 4b

1433.5 1433.5 0.045 1458.7 3 0c

1434.1 0.244 1478.9 4 3
1440.4 0.222 1465.6 3 2
1443.9 0.238 1455.1 2 1

1449.9 1449.6 0.192 1452.4 1 0
1460.4 1459.3 0.382 1459.3 0 1d

1462.8 1462.6 0.542 1465.4 1 2
1468.8 1467.9 0.463 1479.1 2 3
1473.4 1473.4 0.398 1498.6 3 4
1478.4 1478.9 0.343 1523.7 4 5
1485.2 1484.5 0.290 1554.5 5 6
1490.4 1490.1 0.239 1590.9 6 7
1495.6 1495.7 0.192 1632.9 7 8
1500.3 1501.3 0.149 1680.5 8 9
1505.8 1506.9 0.113 1733.7 9 10
1510.3 1512.4 0.082 1792.4 10 11
1515.2 1518.0 0.058 1856.8 11 12
1521.0 1523.6 0.040 1926.8 12 13
1525.5 1529.2 0.026 2002.4 13 14
aLeading description is ∣2,−4⟩ − ∣ − 2, 4⟩.
bLeading description is ∣2,−4⟩ + ∣ − 2, 4⟩.
cLeading description is 0.9∣1, 0⟩ + 0.4∣2,−2⟩.
dLeading description is ∣2, 1⟩ + ∣ − 2,−1⟩.

to that of the uncoupled scissor spectrum of Fig. 7(a). This similarity
is partly due to the same dipole selection rules. The intense peak
at 2913 cm−1 is due to Δℓ = 0 perpendicular transitions to the ψs

±1
manifold of states. One each side of this peak, we see a series of
evenly spaced parallel transitions due to the Δℓ = ±1 selection rule.
These transitions correspond to excitation of the ψs

±2 manifold of
states. There is, however, an additional reason for the similarity.
Both sets of the ℓv = ±1 states are about 6 cm−1 higher in energy than
their ℓv = ±2 counterparts. This similarity can be seen by comparing
the Hamiltonians of Eqs. (11) and (26).

The spectral transitions to the asymmetric CH stretches, shown
in Fig. 9(b), result from the allowed vibrational transitions to states
ψa
ℓv

with ℓv = 0, ±1, and ±2. The relative intensities follow from the

FIG. 9. High-resolution experimental spectrum showing the wings of the spectral
region associated with (a) Δℓ = −1 and (b) Δℓ = +1 transitions of the scissor
fundamental. Theoretical rotationless spectrum for the parallel transitions shown
as impulses is compared to a low-resolution spectrum obtained by convoluting the
experimental spectrum with a Gaussian line shape with σ = 1.0 cm−1.
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results of Table V. The latter set of states lie lower in energy than the
ℓv = 0 state, leading to a perpendicular Δℓ = ±1 set of transitions that
are predominantly shifted to lower energies than the most intense
Δℓ = 0 parallel feature.

When we allow the CH stretches to couple to the pseudorota-
tional degree of freedom, a qualitatively different spectrum emerges
as seen in Fig. 9(c). The reason for the dramatic coupling is apparent
in the form of Eqs. (26)–(28). The leading coupling terms between
the stretches are those terms proportional to e±iϕ found in the
coupling between the symmetric and antisymmetric stretches ℋ s,a.
As an example, consider the term proportional to 14e−iϕ cm −1. This
term couples the bright state ψs

1 to the ψa
−2 state. The difference

in the vibrational contribution to the energies of these two states
is just 16 cm−1. This and other couplings lead to substantial state
mixing as revealed by the differences between Figs. 9(a)–9(c). Not
all states, however, are strongly mixed. The bright state ψa

0 is ener-
getically removed from the other CH stretch states. Its unscaled
(scaled) energy is 3088 (2967) cm−1. This state is directly coupled
to the degenerate ψs

±2 states whose unscaled (scaled) energies are
3027 (2909) cm−1. Since this energy difference is large compared to
the coupling matrix of 4e±iϕ cm−1, we expect and find that the ψa

0
manifold of states are relatively uncoupled from the other stretching
states.

Any coupling that is present at these higher transition energies
is typically indirect coupling. For example, in the absence of the
Fermi coupling, the ∣0a, 2⟩ state is coupled to the state ∣ − 1a, 4⟩,
which in turn is coupled to ∣1s, 5⟩ as described by the Hamiltonian
matrix

Hc =
⎛
⎜⎜⎜⎜
⎝

2978 −5 0

−5 2996 10

0 10 2984

⎞
⎟⎟⎟⎟
⎠

. (36)

FIG. 10. Impulse plots of CH stretch vibrational spectra with no coupling to pseu-
dorotation for (a) symmetric and (b) antisymmetric CH stretches. Peaks in (a) at
2913 cm−1 and (b) at 2965 cm−1 have intensities of 187 and 126 km/mol, respec-
tively. (c) Impulse plot resulting from the coupling of CH stretches to pseudorotation
degree of freedom. Model assumes no Fermi coupling to scissor modes. The
temperature is set at −50.0 ○C.

FIG. 11. Comparison of experiment and theory with Fermi coupling to the
scissor modes. (a) Impulse plot of spectrum resulting from CH stretches and
scissors coupled to the pseudorotation degree of freedom. (b) Comparison of
theory with rotations and experiment in which T = −50 ○C; the theoretical inten-
sities are scaled and individual lines are broadened by Gaussian functions
exp[−(I − Io)/σ2] with σ = 0.5 cm−1.

Here, we are using the notation ∣ℓs/a
v , ℓ⟩ to describe the direct product

basis functions.
In order to compare to experiment one needs to include the

Fermi coupling to the scissor modes. We include these interac-
tions in our results of Fig. 10(a). Comparing this figure to Fig. 9(c)
allows on to see the extent to which the Fermi coupling affects
the spectral features. When one includes the rotational vibra-
tional profiles, as was done for the scissor fundamental, we obtain
the results of Fig. 10(b), one can see the extent of the agree-
ment between our model and the experimental spectrum. Our
model fails to capture the detailed features. Given its simplicity,
its reliance on DFT scaled calculations, its assumption of trans-
ferability of anharmonic coupling terms, and its neglect of most
of the degrees of freedom, we consider the comparison to be
good.

One of the most striking features of the CH stretch spectrum
is the absence of the clearly evident Δℓ = ±1 progressions observed
in the CH2 scissor fundamental. In the context of our model, these
lines are absent due to the large variations of the CH stretch site ener-
gies in our local mode model (see Fig. 11) as the CH stretch moves
between equatorial and axial like environments over the course of
pseudorotation. These variations lead to the large coupling terms
found in ℋ s,a of Eq. (28) and the subsequent state-mixing predicted
by our model and as evidenced by the dramatic difference between
the panels of Figs. 9(a)–9(c).

VII. CONCLUSIONS
In this paper, we report recently measured IR spectra for the

CH2 scissor vibrations and CH stretch vibrations of cyclopentane
and develop models that describe these vibrations and how they
are affected by pseudorotation. This work extends previous studies
of this molecule by explicitly including the potential terms, calcu-
lated with electronic structure methods, that couple these modes as
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a function of pseudorotation. This work builds on our previous local
mode treatments of these vibrations. The resulting spectral predic-
tions of that model, which had been shown to be successful for both
open and close shell systems as well as ground and excited states,
are shown to qualitatively describe many of the spectral features of
cyclopentane.

The distinguishing feature of this work is the combination of
local modes and symmetry considerations that lead to simple direct
product matrix representations that form the basis of our spectral
calculations. In the case of the scissor vibrations, the coupling
between the scissor vibrations modifies the uncoupled spectrum
with intriguing line shifts and intensity variations that our model
predicts and which are observed experimentally. On closer inspec-
tion, there are clear indications of additional small mixing with other
vibrational or rotational modes, not included in our model, that lead
to minor frequency shifts and fractionation of spectral lines. In stark
contrast, the pseudorotation has a profound effect on state mixing
in the region of the CH stretches. An individual CH stretch can
approximately move between equatorial and axial configurations
over the course of the pseudorotation and this leads to larger cou-
plings that are found for the scissors, and these larger couplings lead
to substantial state mixing.

The present study does not include coupling to the radial
degree of freedom associated with pseudorotation. Bauman and
Laane3 carefully considered this coupling, and, based on their
work, we believe that its inclusion is essential for a more detailed
understanding of higher resolution details of the CH2 scissor
fundamental.

SUPPLEMENTARY MATERIAL

See the supplementary material for the symmetrized Hamilto-
nian matrices for the CH stretches and CH2 overtone and combina-
tion states as well as additional equations describing the derivation
of the CH stretch dipole moment matrix elements.
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