1,304 research outputs found

    New results from DAMA/LIBRA

    Get PDF
    DAMA/LIBRA is running at the Gran Sasso National Laboratory of the I.N.F.N.. Here the results obtained with a further exposure of 0.34 ton x yr are presented. They refer to two further annual cycles collected one before and one after the first DAMA/LIBRA upgrade occurred on September/October 2008. The cumulative exposure with those previously released by the former DAMA/NaI and by DAMA/LIBRA is now 1.17 ton x yr, corresponding to 13 annual cycles. The data further confirm the model independent evidence of the presence of Dark Matter (DM) particles in the galactic halo on the basis of the DM annual modulation signature (8.9 sigma C.L. for the cumulative exposure). In particular, with the cumulative exposure the modulation amplitude of the single-hit events in the (2 -- 6) keV energy interval measured in NaI(Tl) target is (0.0116 +- 0.0013) cpd/kg/keV; the measured phase is (146 +- 7) days and the measured period is (0.999 +- 0.002) yr, values well in agreement with those expected for the DM particles.Comment: presented at the Int. Conf. Beyond the Standard Models of Particle Physics, Cosmology and Astrophysics (BEYOND 2010), 1-6 February 2010, Cape Town, South Afric

    Direct Detection of Non-Chiral Dark Matter

    Full text link
    Direct detection experiments rule out fermion dark matter that is a chiral representation of the electroweak gauge group. Non-chiral real, complex and singlet representations, however, provide viable fermion dark matter candidates. Although any one of these candidates will be virtually impossible to detect at the LHC, it is shown that they may be detected at future planned direct detection experiments. For the real case, an irreducible radiative coupling to quarks may allow a detection. The complex case in general has an experimentally ruled out tree-level coupling to quarks via Z-boson exchange. However, in the case of two SU(2)_L doublets, a higher dimensional coupling to the Higgs can suppress this coupling, and a remaining irreducible radiative coupling may allow a detection. Singlet dark matter could be detected through a coupling to quarks via Higgs exchange. Since all non-chiral dark matter can have a coupling to the Higgs, at least some of its mass can be obtained from electroweak symmetry breaking, and this mass is a useful characterization of its direct detection cross-section.Comment: 22 pages, 3 figures. References added. Minor corrections to match published versio

    Technical aspects in dark matter investigations

    Full text link
    Some theoretical and experimental aspects regarding the direct dark matter field are mentioned. In particular some arguments, which play a relevant role in the evaluation of model dependent interpretations of experimental results and in comparisons, are shortly addressed.Comment: Proceedings of TAUP 2011 Conferenc

    GENIUS-TF: a test facility for the GENIUS project

    Get PDF
    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the GENIUS test facility, will be build up at the Laboratorio Nazionale del Gran Sasso (LNGS). With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation signature within about two years of measurement.Comment: 14 pages, latex, 5 figures, 3 tables; submitted to Astroparticle Physic

    Interpreting the bounds on Solar Dark Matter induced muons at Super-Kamiokande in the light of CDMS results

    Full text link
    We consider the recent limits on dark matter - nucleon elastic scattering cross section from the analysis of CDMS II collaboration using the two signal events observed in CDMS experiment. With these limits we try to interpret the Super-Kamiokande (SK) bounds on the detection rates of up-going muons induced by the neutrinos that are produced in the sun from the decay of annihilation products of dark matter (WIMPs) captured in the solar core. Calculated rates of up-going muons for different annihilation channels at SK using CDMS bounds are found to be orders below the predicted upper limits of such up-going muon rates at SK. Thus there exists room for enhancement (boost) of the calculated rates using CDMS limits for interpreting SK bounds. Such a feature is expected to represent the PAMELA data with the current CDMS limits. We also show the dependence of such a possible enhancement factor (boost) on WIMP mass for different WIMP annihilation channels.Comment: 7 pages, 6 figure

    B's with Direct Decays: Tevatron and LHC Discovery Prospects in the b\bar{b}+MET Channel

    Full text link
    We explore the discovery prospects for B'\bar{B}' pair production followed by direct decays B'->bX, where B' is a new quark and X is a long-lived neutral particle. We develop optimized cuts in the (m_B', m_X) plane and show that the 7 TeV LHC with an integrated luminosity of 1 (10) fb^-1 may exclude masses up to m_B' ~ 620 (800) GeV, completely covering the mass range allowed for new quarks that get mass from electroweak symmetry breaking. This analysis is applicable to other models with b\bar{b}+MET signals, including supersymmetric models with bottom squarks decaying directly to neutralinos, and models with exotic quarks decaying directly to GeV-scale dark matter. To accommodate these and other interpretations, we also present model-independent results for the b\bar{b}+MET cross section required for exclusion and discovery.Comment: 18 pages; v2: published versio

    The Enigma of the Dark Matter

    Get PDF
    One of the great scientific enigmas still unsolved, the existence of dark matter, is reviewed. Simple gravitational arguments imply that most of the mass in the Universe, at least 90%, is some (unknown) non-luminous matter. Some particle candidates for dark matter are discussed with particular emphasis on the neutralino, a particle predicted by the supersymmetric extension of the Standard Model of particle physics. Experiments searching for these relic particles, carried out by many groups around the world, are also discussed. These experiments are becoming more sensitive every year and in fact one of the collaborations claims that the first direct evidence for dark matter has already been observed.Comment: Invited review article for the journal Contemporary Physics. The level is suitable for researchers which are non-specialists in the subject, and also for students. Latex, 20 pages, 5 figure

    Inelastic Dark Matter

    Get PDF
    Many observations suggest that much of the matter of the universe is non-baryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Delta m ~ 100kev), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories.Comment: 20 pages, 6 figure

    Dark Matter-Motivated Searches for Exotic 4th Generation Quarks in Tevatron and Early LHC Data

    Full text link
    We determine the prospects for finding dark matter at the Tevatron and LHC through the production of exotic 4th generation quarks T' that decay through T' \to t X, where X is dark matter. The resulting signal of t \bar{t} + \met has not previously been considered in searches for 4th generation quarks, but there are both general and specific dark matter motivations for this signal, and with slight modifications, this analysis applies to any scenario where invisible particles are produced in association with top quarks. Current direct and indirect bounds on such exotic quarks restrict their masses to be between 300 and 600 GeV, and the dark matter's mass may be anywhere below m_T'. We simulate the signal and main backgrounds with MadGraph/MadEvent-Pythia-PGS4. For the Tevatron, we find that an integrated luminosity of 20 fb^-1 will allow 3\sigma discovery up to m_T' = 400 GeV and 95% exclusion up to m_T' = 455 GeV. For the 10 TeV LHC with 300 pb^-1, the discovery and exclusion sensitivities rise to 490 GeV and 600 GeV. These scenarios are therefore among the most promising for dark matter at colliders. Perhaps most interestingly, we find that dark matter models that can explain results from the DAMA, CDMS and CoGeNT Collaborations can be tested with high statistical significance using data already collected at the Tevatron and have extraordinarily promising implications for early runs of the LHC.Comment: 22 pages; v2: additional discussion of relation to DAMA, CDMS, and CoGeNT results, references adde
    • …
    corecore