240 research outputs found

    Solar system constraints on the Dvali-Gabadadze-Porrati braneworld theory of gravity

    Get PDF
    A number of proposals have been put forward to account for the observed accelerating expansion of the Universe through modifications of gravity. One specific scenario, Dvali-Gabadadze-Porrati (DGP) gravity, gives rise to a potentially observable anomaly in the solar system: all planets would exhibit a common anomalous precession, dw/dt, in excess of the prediction of General Relativity. We have used the Planetary Ephemeris Program (PEP) along with planetary radar and radio tracking data to set a constraint of |dw/dt| < 0.02 arcseconds per century on the presence of any such common precession. This sensitivity falls short of that needed to detect the estimated universal precession of |dw/dt| = 5e-4 arcseconds per century expected in the DGP scenario. We discuss the fact that ranging data between objects that orbit in a common plane cannot constrain the DGP scenario. It is only through the relative inclinations of the planetary orbital planes that solar system ranging data have sensitivity to the DGP-like effect of universal precession. In addition, we illustrate the importance of performing a numerical evaluation of the sensitivity of the data set and model to any perturbative precession.Comment: 9 pages, 2 figures, accepted for publication in Phys. Rev.

    APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections

    Full text link
    A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.Comment: 37 pages; 10 figures; 1 table: accepted for publication in PAS

    An absolute calibration system for millimeter-accuracy APOLLO measurements

    Get PDF
    Lunar laser ranging provides a number of leading experimental tests of gravitation -- important in our quest to unify General Relativity and the Standard Model of physics. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has for years achieved median range precision at the ~2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in-situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a "truth" input against which APOLLO's timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the ~3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.Comment: 21 pages, 10 figures, submitted to Classical and Quantum Gravit

    Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    Get PDF
    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present work on an expanded LMH6574 multiplexer system with a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed

    DMTPC: A dark matter detector with directional sensitivity

    Get PDF
    By correlating nuclear recoil directions with the Earth's direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence of backgrounds. Here, we describe the Dark Matter Time-Projection Chamber (DMTPC) detector, a TPC filled with CF4 gas at low pressure (0.1 atm). Using this detector, we have measured the vector direction (head-tail) of nuclear recoils down to energies of 100 keV with an angular resolution of <15 degrees. To study our detector backgrounds, we have operated in a basement laboratory on the MIT campus for several months. We are currently building a new, high-radiopurity detector for deployment underground at the Waste Isolation Pilot Plant facility in New Mexico.Comment: 4 pages, 2 figures, proceedings for the CIPANP 2009 conference, May 26-31, 200

    Reducing DRIFT backgrounds with a submicron aluminized-mylar cathode

    Get PDF
    Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a View the MathML source thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of background events to alpha decays. Two independent methods of measuring the absolute alpha decay rate are used to ensure an accurate result, and agree to within 10%. Using alpha range spectroscopy, we measure the radiologically cleanest cathode version to have a contamination of 3.3±0.1 ppt 234U and 73±2 ppb 238U. This cathode reduces the probability of producing an RPR from an alpha decay by a factor of 70±20 compared to the original stainless steel wire cathode. First results are presented from a texturized version of the cathode, intended to be even more transparent to alpha particles. These efforts, along with other background reduction measures, have resulted in a drop in the observed background rate from 500/day to 1/day. With the recent implementation of full-volume fiducialization, these remaining background events are identified, allowing for background-free operation

    Dark Matter Time Projection Chamber : Recent R&D Results

    Get PDF
    The Dark Matter Time Projection Chamber collaboration recently reported a dark matter limit obtained with a 10 liter time projection chamber filled with CF[subscript 4] gas. The 10 liter detector was capable of 2D tracking (perpendicular to the drift direction) and 2D fiducialization, and only used information from two CCD cameras when identifying tracks and rejecting backgrounds. Since that time, the collaboration has explored the potential benefits of photomultiplier tube and electronic charge readout to achieve 3D tracking, and particle identification for background rejection. The latest results of this effort is described here
    • …
    corecore