197 research outputs found
Strings at future singularities
We discuss the behaviour of strings propagating in spacetimes which allow
future singularities of either a sudden future or a Big-Rip type. We show that
in general the invariant string size remains finite at sudden future
singularities while it grows to infinity at a Big-Rip. This claim is based on
the discussion of both the tensile and null strings. In conclusion, strings may
survive a sudden future singularity, but not a Big-Rip where they are
infinitely stretched.Comment: REVTEX 4.0, 4 pages, no figures, references adde
Lineability, spaceability, and additivity cardinals for Darboux-like functions
We introduce the concept of maximal lineability cardinal number, mL(M), of a subset M of a topological vector space and study its relation to the cardinal numbers known as: additivity A(M), homogeneous lineability HL(M), and lineability L(M) of M. In particular, we will describe, in terms of L, the lineability and spaceability of the families of the following Darboux-like functions on R-n, n >= 1: extendable, Jones, and almost continuous function
Generalized gradients on Lie algebroids
Generalized O(n) -gradients for connections on Lie algebroids are derived
An undecidable case of lineability in R^R
Recently it has been proved that, assuming that there is an almost disjoint
family of cardinality (2^{\mathfrak c}) in (\mathfrak c) (which is assured, for
instance, by either Martin's Axiom, or CH, or even 2^{<\mathfrak c=\mathfrak
c}) one has that the set of Sierpi\'nski-Zygmund functions is
(2^{\mathfrak{c}})-strongly algebrable (and, thus,
(2^{\mathfrak{c}})-lineable). Here we prove that these two statements are
actually equivalent and, moreover, they both are undecidable. This would be the
first time in which one encounters an undecidable proposition in the recently
coined theory of lineability.Comment: 5 page
Polycythemia vera as a presentation of renal angiomyolipoma: a case report
<p>Abstract</p> <p>Introduction</p> <p>Angiomyolipoma is a common benign renal tumor composed of thick-walled blood vessels, smooth muscle, and adipose tissue. It may be found incidentally during workup for suspected renal disease. Although angiomyolipoma may present as a palpable, tender renal mass with flank pain and gross or microscopic hematuria, many patients are asymptomatic. Erythrocytosis is an unusual presentation, and malignant transformation may be suspected. This report describes a rare case of a woman diagnosed with renal angiomyolipoma and polycythemia vera. The report discusses the differential diagnosis using erythropoietin, erythropoietin-receptor and Janus kinase 2.</p> <p>Case presentation</p> <p>A 79-year-old Chinese woman was diagnosed with erythrocytosis according to World Health Organization criteria. An upper left renal pole angiomyolipoma was successfully ablated after multiple phlebotomy treatments. Red cell count immediately returned to normal, but gradually increased after 4 months. Polycythemia vera was finally diagnosed by positive mutation of Janus kinase 2 and negative erythropoietin protein expression. Her clinical symptoms improved with regular phlebotomy and hydroxyurea treatment.</p> <p>Conclusion</p> <p>Concurrent occurence of angiomyolipoma and polycythemia vera is rare. Polycythemia vera can be easily missed. Polycythemia vera can be confirmed with high specificity and sensitivity by the acquired somatic mutation. Surgical intervention for this renal tumor should be avoided unless malignancy or renal cell carcinoma is suspected or to prevent spontaneous rupture of larger tumors.</p
Domain wall brane in squared curvature gravity
We suggest a thick braneworld model in the squared curvature gravity theory.
Despite the appearance of higher order derivatives, the localization of gravity
and various bulk matter fields is shown to be possible. The existence of the
normalizable gravitational zero mode indicates that our four-dimensional
gravity is reproduced. In order to localize the chiral fermions on the brane,
two types of coupling between the fermions and the brane forming scalar is
introduced. The first coupling leads us to a Schr\"odinger equation with a
volcano potential, and the other a P\"oschl-Teller potential. In both cases,
the zero mode exists only for the left-hand fermions. Several massive KK states
of the fermions can be trapped on the brane, either as resonant states or as
bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version
to be published in JHE
Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities
We investigate de Sitter solutions in non-local gravity as well as in
non-local gravity with Lagrange constraint multiplier. We examine a condition
to avoid a ghost and discuss a screening scenario for a cosmological constant
in de Sitter solutions. Furthermore, we explicitly demonstrate that three types
of the finite-time future singularities can occur in non-local gravity and
explore their properties. In addition, we evaluate the effective equation of
state for the universe and show that the late-time accelerating universe may be
effectively the quintessence, cosmological constant or phantom-like phases. In
particular, it is found that there is a case in which a crossing of the phantom
divide from the non-phantom (quintessence) phase to the phantom one can be
realized when a finite-time future singularity occurs. Moreover, it is
demonstrated that the addition of an term can cure the finite-time future
singularities in non-local gravity. It is also suggested that in the framework
of non-local gravity, adding an term leads to possible unification of the
early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General
Relativity and Gravitatio
Reconstruction of the equation of state for the cyclic universes in homogeneous and isotropic cosmology
We study the cosmological evolutions of the equation of state (EoS) for the
universe in the homogeneous and isotropic
Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) space-time. In particular, we
reconstruct the cyclic universes by using the Weierstrass and Jacobian elliptic
functions. It is explicitly illustrated that in several models the universe
always stays in the non-phantom (quintessence) phase, whereas there also exist
models in which the crossing of the phantom divide can be realized in the
reconstructed cyclic universes.Comment: 29 pages, 8 figures, version accepted for publication in Central
European Journal of Physic
(Photo)physical properties of new molecular glasses end-capped with thiophene rings composed of diimide and imine units
New symmetrical arylene bisimide derivatives formed by using electron-donating-electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N′-bis(5- aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5- thiophenedicarboxaldehyde or 2,2′-bithiophene-5,5′-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm2 were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69-0.90%
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
- …