9 research outputs found

    Functional parameters indicative of mild cognitive impairment: a systematic review using instrumented kinematic assessment

    Get PDF
    Background: Patients with mild cognitive impairment (MCI) experience alterations of functional parameters, such as an impaired balance or gait. The current systematic review set out to investigate whether functional objective performance may predict a future risk of MCI; to compare functional objective parameters in patients with MCI and a control group; and to assess changes in these parameters after different physical activity interventions. Methods: Electronic databases, including PubMed, AMED, CINAHL, EMBASE, PEDro and Web of Science as well as grey literature databases, were searched from inception to February 2020. Cohort studies and Randomized Controlled Trials (RCTs) were included. The risk of bias of the included studies was assessed independently by reviewers using quality assessment checklists. The level of evidence per outcome was assessed using the GRADE criteria. Results: Seventeen studies met inclusion criteria including patients with MCI. Results from RCTs suggested that gait speed, gait variability and balance may be improved by different physical activity interventions. Cohort studies showed that slower gait speed, above all, under Dual Task (DT) conditions, was the main impaired parameter in patients with MCI in comparison with a Control Gorup. Furthermore, cohort studies suggested that gait variability could predict an incident MCI. Although most of included cohort studies reported low risk of bias, RCTs showed an unclear risk of bias. Conclusions: Studies suggest that gait variability may predict an incident MCI. Moreover, different gait parameters, above all under DT conditions, could be impaired in patients with MCI. These parameters could be improved by some physical activity interventions. Although cohort studies reported low risk of bias, RCTs showed an unclear risk of bias and GRADE criteria showed a low level of evidence per outcome, so further studies are required to refute our findings

    Elucidating the Structure–Function Relationship of Poly(3,4-theylenedioxythiophene) Films to Advance Electrochemical Measurements

    No full text
    Previous work has demonstrated the utility of poly­(3,4-theylene­dioxy­thiophene) (PEDOT) electrodes for electrochemical detection of neurochemicals. Although these electrodes have been implemented successfully, there is minimal data linking redox mechanisms, electron-transfer characteristics, and sensor lifetime to the electrode molecular composition. Common polymer electrodes are made from commercially available PEDOT:polystyrenesulfonate (PEDOT:PSS), which is easily processed but has slow electron-transfer kinetics and short electrochemical lifetimes. Here, we describe vapor-phase synthesized PEDOT:tosylate films that have a higher conductance and a much lower apparent capacitance than PEDOT:PSS (99 ± 8 versus 2390 ± 130 μF/cm<sup>2</sup>). Additionally, we show that the electron-transfer kinetics and electrochemical lifetime are both improved. To investigate the chemical causes of these improvements we used ultraviolet–visible absorbance and X-ray photoelectron spectroscopy (XPS). We discovered that the high density of PEDOT incorporated into PEDOT:tosylate films coupled with the lack of impurities and replacing the polymeric dopant (PSS) leads to both increased conductance and reduced film capacitance. This is most clearly demonstrated through the doping ratio of 3.80 ± 0.10 in vapor-phase synthesized PEDOT:tosylate versus 0.20 ± 0.02 in PEDOT:PSS. Furthermore, the electrochemical lifetime of the films is dependent upon the amount of PEDOT present. XPS data was used to elucidate the mode of failure of these electrodes. This begins to illuminate the mechanism of electron transfer at conducting polymers electrodes. Understanding both the characteristics that improve the quality of conducting polymer electrodes and the mechanism of electron transfer therein is a crucial step in the wider adaptation of these materials in biosensor applications

    Supplementary Material for: The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment

    No full text
    <b><i>Background:</i></b> In addition to cognitive deficits, people with mild cognitive impairment (MCI) can experience motor dysfunction, including deficits in gait and balance. Objective, instrumented motor performance assessment may allow the detection of subtle MCI-related motor deficits, allowing early diagnosis and intervention. Motor assessment under dual-task conditions may increase diagnostic accuracy; however, the sensitivity of different cognitive tasks is unclear. <b><i>Objective:</i></b> To systematically review the extant literature focusing on instrumented assessment of gait and balance parameters for discriminating MCI patients from cognitively intact peers. <b><i>Methods:</i></b> Database searches were conducted in PubMed, EMBASE, Cochrane Library, PsycINFO and Web of Science. Inclusion criteria were: (1) clinically confirmed MCI; (2) instrumented measurement of gait and/or balance; (3) English language, and (4) reporting gait or balance parameters which could be included in a meta-analysis for discriminating between MCI patients and cognitively intact individuals based on weighted effect size (d). <b><i>Results:</i></b> Fourteen studies met the inclusion criteria and reported quantitative gait (n = 11) or postural balance (n = 4) parameters to be included in the meta-analysis. The meta-analysis revealed that several gait parameters including velocity (d = -0.74, p < 0.01), stride length (d = -0.65, p < 0.01), and stride time (mean: d = 0.56, p = 0.02; coefficient of variation: d = 0.50, p < 0.01) discriminated best between MCI and healthy controls under single-task conditions. Importantly, dual-task assessment increased the discriminative power of gait variables wherein gait variables with counting tasks appeared to be more sensitive (range d = 0.84-1.35) compared to verbal fluency tasks such as animal naming (range d = 0.65-0.94). Balance parameters identified as significant discriminators were anterior-posterior (d = 0.49, p < 0.01) and mediolateral (d = -0.34, p = 0.04) sway position in the eyes-open condition but not eyes-closed condition. <b><i>Conclusion:</i></b> Existing studies provide evidence that MCI affects specific<b> </b>gait parameters. MCI-related gait changes were most pronounced when subjects are challenged cognitively (i.e., dual task), suggesting that gait assessment with an additional cognitive task is useful for diagnosis and outcome analysis in the target population. Static balance seems to also be affected by MCI, although limited evidence exists. Instrumented motor assessment could provide a critical opportunity for MCI diagnosis and tailored intervention targeting specific deficits and potentially slowing progression to dementia. Further studies are required to confirm our findings

    Development of a model on factors affecting instrumental activities of daily living in people with mild cognitive impairment - A Delphi study

    Get PDF
    Introduction: The level of function of instrumental activities of daily living (IADL) is crucial for a person's autonomy. A clear understanding of the nature of IADL and its limitations in people with mild cognitive impairment (MCI) is lacking. Literature suggests numerous possible influencing factors, e.g. cognitive function, but has not considered other domains of human functioning, such as environmental factors. Our aim was to develop a comprehensive model of IADL functioning that depicts the relevant influencing factors. Methods: We conducted a four-round online Delphi study with a sample of international IADL experts (N = 69). In the first round, panelists were asked to mention all possible relevant cognitive and physical function factors, as well as environmental and personal factors, that influence IADL functioning. In the subsequent rounds, panelists rated the relevance of these factors. Consensus was defined as: 1) ≥70% agreement between panelists on a factor, and 2) stability over two successive rounds. Results: Response rates from the four rounds were high (83 to 100%). In the first round, 229 influencing factors were mentioned, whereof 13 factors reached consensus in the subsequent rounds. These consensual factors were used to build a model of IADL functioning. The final model included: five cognitive function factors (i.e. memory, attention, executive function, and two executive function subdomains -problem solving / reasoning and organization / planning); five physical function factors (i.e. seeing functions, hearing functions, balance, gait / mobility functions and functional mobility functions); two environmental factors (i.e. social network / environment and support of social network / environment); and one personal factor (i.e. education). Conclusions: This study proposes a comprehensive model of IADL functioning in people with MCI. The results from this Delphi study suggest that IADL functioning is not merely affected by cognitive function factors, but also by physical function factors, environmental factors and personal factors. The multiplicity of factors mentioned in the first round also underlines the individuality of IADL functioning in people with MCI. This model may serve as a basis for future research in IADL functioning in people with MCI
    corecore