25 research outputs found

    Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance

    Get PDF
    BACKGROUND: Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The ‘high dose/refuge strategy’, in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. RESULTS: In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. CONCLUSIONS: Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance

    Manipulating Image Luminance to Improve Eye Gaze and Verbal Behavior in Autistic Children

    Get PDF
    Autism has been characterized by a tendency to attend to the local visual details over surveying an image to understand the gist–a phenomenon called local interference. This sensory processing trait has been found to negatively impact social communication. Although much work has been conducted to understand these traits, little to no work has been conducted to intervene to provide support for local interference. Additionally, recent understanding of autism now introduces the core role of sensory processing and its impact on social communication. However, no interventions to the end of our knowledge have been explored to leverage this relationship. This work builds on the connection between visual attention and semantic representation in autistic children. In this work, we ask the following research questions: RQ1: Does manipulating image characteristics of luminance and spatial frequency increase likelihood of fixations in hot spots (Areas of Interest) for autistic children? RQ2: Does manipulating low-level image characteristics of luminance and spatial frequency increase the likelihood of global verbal responses for autistic children? We sought to manipulate visual attention as measured by eye gaze fixations and semantic representation of verbal response to the question “What is this picture about?”. We explore digital strategies to offload low-level, sensory processing of global features via digital filtering. In this work, we designed a global filter to reduce image characteristics found to be distracting for autistic people and compared baseline images to featured images in 11 autistic children. Participants saw counterbalanced images way over 2 sessions. Eye gaze in areas of interest and verbal responses were collected and analyzed. We found that luminance in non-salient areas impacted both eye gaze and verbal responding–however in opposite ways (however versus high levels of luminance). Additionally, the interaction of luminance and spatial frequency in areas of interest is also significant. This is the first empirical study in designing an assistive technology aimed to augment global processing that occurs at a sensory-processing and social-communication level. Contributions of this work include empirical findings regarding the quantification of local interference in images of natural scenes for autistic children in real-world settings; digital methods to offload global visual processing to make this information more accessible via insight on the role of luminance and spatial frequency in visual perception of and semantic representation in images of natural scenes

    Potato virus X-mediated constitutive expression of Plutella xylostella PxSDF2L1 gene in Nicotiana benthamiana confers resistance to Phytophthora parasitica var. nicotianae

    Get PDF
    Background The Plutella xylostella PxSDF2L1 gene was previously reported to enhance insect resistance to pathogen at high basal transcription rate. PxSDF2L1 shows similitude with the stromal cell-derived factor 2 (SDF2), an ER stress-induced chaperon protein that is highly conserved throughout animals and plants. The precise biological function of SDF2 is not clear, but its expression is required for innate immunity in plants. Here, we investigate whether a continuous expression of PxSDF2L1 in Nicotiana benthamiana can similarly confer resistance to plant pathogen, particularly, the black shank Phytophthora parasitica var. nicotianae. Results The N. benthamiana plants were inoculated with agrobacteria transformed with a PVX-based binary vector carrying the PxSDF2L1 gene; similar agroinoculation experiments with a PVX vector carrying the GFP gene were used for controls. In pot trials, agroinfected N. benthamiana plants constitutively expressing PxSDF2L1 showed a significant reduction of stem disease symptoms caused by the inoculation with P. parasitica, compared with controls. Conclusions We confirm a role of PxSDF2L1 in resistance to black shank, with a potential application to engineering active resistance against this oomycete in the commercial N. tabacum species and propose its evaluation in other crop families and plant pathogens

    Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger

    Get PDF
    Endoplasmic reticulum associated degradation (ERAD) is a conserved mechanism to remove misfolded proteins from the ER by targeting them to the proteasome for degradation. To assess the role of ERAD in filamentous fungi, we have examined the consequences of disrupting putative ERAD components in the filamentous fungus Aspergillus niger. Deletion of derA, doaA, hrdC, mifA, or mnsA in A. niger yields viable strains, and with the exception of doaA, no significant growth phenotype is observed when compared to the parental strain. The gene deletion mutants were also made in A. niger strains containing single- or multicopies of a glucoamylase–glucuronidase (GlaGus) gene fusion. The induction of the unfolded protein response (UPR) target genes (bipA and pdiA) was dependent on the copy number of the heterologous gene and the ERAD gene deleted. The highest induction of UPR target genes was observed in ERAD mutants containing multiple copies of the GlaGus gene. Western blot analysis revealed that deletion of the derA gene in the multicopy GlaGus overexpressing strain resulted in a 6-fold increase in the intracellular amount of GlaGus protein detected. Our results suggest that impairing some components of the ERAD pathway in combination with high expression levels of the heterologous protein results in higher intracellular protein levels, indicating a delay in protein degradation

    Biochemical characterization of the third domain From Bacillus thuringiensis CRY1A Toxins

    No full text
    Cry proteins from Bacillus thuringiensis have insecticidal properties. The function of domains I and II has been described but domain III has so far eluded understanding. Domain III from Cry1Ab and Cry1Ac has been cloned, expressed in E. coli and injected to rabbits with the aid of characterizing them immunologically. Interestingly, polyclonal antibodies against Cry1Ab fragment did not recognize either the native Cry1Ab toxin or the Cry1Ac fragment while those against the latter did recognize either the native Cry1Ac toxin or the Cry1Ab protein fragment. A combination of information from sequence comparison and hydrophobicity profile indicates that these protein fragments possibly adopt different spatial dispositions within the respective toxins

    NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions

    No full text
    Plant defensins are small cysteine-rich peptides that inhibit the growth of a broad range of microbes. In this article, we describe NmDef02, a novel cDNA encoding a putative defensin isolated from Nicotiana megalosiphon upon inoculation with the tobacco blue mould pathogen Peronospora hyoscyami f.sp. tabacina. NmDef02 was heterologously expressed in the yeast Pichia pastoris, and the purified recombinant protein was found to display antimicrobial activity in vitro against important plant pathogens. Constitutive expression of NmDef02 gene in transgenic tobacco and potato plants enhanced resistance against various plant microbial pathogens, including the oomycete Phytophthora infestans, causal agent of the economically important potato late blight disease, under greenhouse and field condition
    corecore