8,114 research outputs found
Floristic response to urbanization: Filtering of the bioregional flora in Indianapolis, Indiana, USA
PREMISE OF THE STUDY: Globally, urban plant populations are becoming increasingly important, as these plants play a vital role in ameliorating effects of ecosystem disturbance and climate change. Urban environments act as filters to bioregional flora, presenting survival challenges to spontaneous plants. Yet, because of the paucity of inventory data on plants in landscapes both before and after urbanization, few studies have directly investigated this effect of urbanization. METHODS: We used historical, contemporary, and regional plant species inventories for Indianapolis, Indiana USA to evaluate how urbanization filters the bioregional flora based on species diversity, functional traits, and phylogenetic community structure. KEY RESULTS: Approximately 60% of the current regional flora was represented in the Indianapolis flora, both historically and presently. Native species that survived over time were significantly different in growth form, life form, and dispersal and pollination modes than those that were extirpated. Phylogenetically, the historical flora represented a random sample of the regional flora, while the current urban flora represented a nonrandom sample. Both graminoid habit and abiotic pollination are significantly more phylogenetically conserved than expected. CONCLUSIONS: Our results likely reflect the shift from agricultural cover to built environment, coupled with the influence of human preference, in shaping the current urban flora of Indianapolis. Based on our analyses, the urban environment of Indianapolis does filter the bioregional species pool. To the extent that these filters are shared by other cities and operate similarly, we may see increasingly homogenized urban floras across regions, with concurrent loss of evolutionary information
Appendix C: Faculty Publication
From the beginning the ILR faculty devoted much of its time and effort to the preparation and publication of works covering a wide range of subject matter within the industrial and labor relations field. Some of the faculty output addressed the interests of their scholarly colleagues and students but much was directed to practitioners and the general public as well
Magnetotransport in the low carrier density ferromagnet EuB_6
We present a magnetotransport study of the low--carrier density ferromagnet
EuB_6. This semimetallic compound, which undergoes two ferromagnetic
transitions at T_l = 15.3 K and T_c = 12.5 K, exhibits close to T_l a colossal
magnetoresistivity (CMR). We quantitatively compare our data to recent
theoretical work, which however fails to explain our observations. We attribute
this disagreement with theory to the unique type of magnetic polaron formation
in EuB_6.Comment: Conference contribution MMM'99, San Jos
A Variational Principle for the Asymptotic Speed of Fronts of the Density Dependent Diffusion--Reaction Equation
We show that the minimal speed for the existence of monotonic fronts of the
equation with , and in
derives from a variational principle. The variational principle allows
to calculate, in principle, the exact speed for arbitrary . The case
when is included as an extension of the results.Comment: Latex, postcript figure availabl
Recommended from our members
Fungal community assembly in soils and roots under plant invasion and nitrogen deposition
Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea
Shifts in microbial communities driven by anthropogenic nitrogen (N) addition have broad-scale ecological consequences. However, responses of microbial groups to exogenous N supply vary considerably across studies, hindering efforts to predict community changes. We used meta-analytical techniques to explore how amoA gene abundances of ammonia-oxidizing archaea (AOA) and bacteria (AOB) respond to N addition, and found that N addition increased AOA and AOB abundances by an average of 27% and 326%, respectively. Responses of AOB varied by study type, ecosystem, fertilizer type, and soil pH, and were strongest in unmanaged wildland soils and soils fertilized with inorganic N sources. Increases in nitrification potential with N addition significantly correlated with only AOB. Our analyses suggest that elevated N supply enhances soil nitrification potential by increasing AOB populations, and that this effect may be most pronounced in unmanaged wildland soils
Recommended from our members
Native and invasive inoculation sources modify fungal community assembly and biomass production of a chaparral shrub
Feedbacks between plants and surrounding soil microbes can contribute to the establishment and persistence of invasive annual grasses as well as limit the success of restoration efforts. In this study, we aim to understand how three sources of soil inocula – native, invasive (from under Bromus diandrus) and sterile – affect the growth response and fungal community composition in the roots of a chaparral shrub, Adenostoma fasciculatum. We grew A. fasciculatum from seed in a greenhouse with each inoculum source and harvested at six months. We measured above- and below-ground biomass, arbuscular mycorrhizal fungal (AMF) colonization and conducted targeted-amplicon sequencing of the 18S and ITS2 loci to characterize AMF and general fungal community composition, respectively. Native inoculum resulted in roots with richer communities of some groups of AMF and non-AMF symbionts, when compared to roots grown with invasive or sterile inoculum. Seedlings grown with invasive and native inoculum did not have different growth responses, but both produced more biomass than a sterile control. These findings suggest that inoculation with soil from native species can increase the diversity of multiple groups of fungal symbionts and inoculation with live soil (invasive or native) can increase seedling biomass. Moreover, future work would benefit from assessing if a more diverse community of fungal symbionts increases seedling survival when planted in field restoration sites
The ILR School at Fifty: Voices of the Faculty, Alumni & Friends (Full Text)
A collection of reflections on the first fifty years of the School of Industrial and Labor Relations at Cornell University. Compiled by Robert B. McKersie, J. Gormly Miller, Robert L. Aronson, and Robert R. Julian. Edited by Elaine Gruenfeld Goldberg. It was the hope of the compilers that the reflections contained in this book would both kindle memories of the school and stimulate interest on the part of future generations of ILRies who have not yet shared in its special history.
Dedicated to the Memory of J. Gormly Miller, 1914-1995.
Copyright 1996 by Cornell University. All rights reserved
Erosion waves: transverse instabilities and fingering
Two laboratory scale experiments of dry and under-water avalanches of
non-cohesive granular materials are investigated. We trigger solitary waves and
study the conditions under which the front is transversally stable. We show the
existence of a linear instability followed by a coarsening dynamics and finally
the onset of a fingering pattern. Due to the different operating conditions,
both experiments strongly differ by the spatial and time scales involved.
Nevertheless, the quantitative agreement between the stability diagram, the
wavelengths selected and the avalanche morphology reveals a common scenario for
an erosion/deposition process.Comment: 4 pages, 6 figures, submitted to PR
Development of a theory of the spectral reflectance of minerals, part 2
Theory of diffuse reflectance of particulate media including garnet, glass, corundum powders, and mixture
- …
