102 research outputs found

    A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter

    Full text link
    We consider stationary, axially and equatorially symmetric systems consisting of a central rotating and charged degenerate black hole and surrounding matter. We show that a2+Q2=M2a^2+Q^2=M^2 always holds provided that a continuous sequence of spacetimes can be identified, leading from the Kerr-Newman solution in electrovacuum to the solution in question. The quantity a=J/Ma=J/M is the black hole's intrinsic angular momentum per unit mass, QQ its electric charge and MM the well known black hole mass parameter introduced by Christodoulou and Ruffini.Comment: 19 pages, 2 figures, replaced with published versio

    Mass, angular-momentum, and charge inequalities for axisymmetric initial data

    Get PDF
    We present the key elements of the proof of an upper bound for angular-momentum and charge in terms of the mass for electro-vacuum asymptotically flat axisymmetric initial data sets with simply connected orbit space

    Negative Komar Mass of Single Objects in Regular, Asymptotically Flat Spacetimes

    Full text link
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. The one type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative.Comment: 7 pages, 2 figures, document class iopart. v2: changes made (including title) to coincide with published versio

    Numerical evolutions of a black hole-neutron star system in full General Relativity: I. Head-on collision

    Get PDF
    We present the first simulations in full General Relativity of the head-on collision between a neutron star and a black hole of comparable mass. These simulations are performed through the solution of the Einstein equations combined with an accurate solution of the relativistic hydrodynamics equations via high-resolution shock-capturing techniques. The initial data is obtained by following the York-Lichnerowicz conformal decomposition with the assumption of time symmetry. Unlike other relativistic studies of such systems, no limitation is set for the mass ratio between the black hole and the neutron star, nor on the position of the black hole, whose apparent horizon is entirely contained within the computational domain. The latter extends over ~400M and is covered with six levels of fixed mesh refinement. Concentrating on a prototypical binary system with mass ratio ~6, we find that although a tidal deformation is evident the neutron star is accreted promptly and entirely into the black hole. While the collision is completed before ~300M, the evolution is carried over up to ~1700M, thus providing time for the extraction of the gravitational-wave signal produced and allowing for a first estimate of the radiative efficiency of processes of this type.Comment: 16 pages, 12 figure

    Area-charge inequality for black holes

    Full text link
    The inequality between area and charge A≥4πQ2A\geq 4\pi Q^2 for dynamical black holes is proved. No symmetry assumption is made and charged matter fields are included. Extensions of this inequality are also proved for regions in the spacetime which are not necessarily black hole boundaries.Comment: 21 pages, 2 figure

    Regularity of Cauchy horizons in S2xS1 Gowdy spacetimes

    Full text link
    We study general S2xS1 Gowdy models with a regular past Cauchy horizon and prove that a second (future) Cauchy horizon exists, provided that a particular conserved quantity JJ is not zero. We derive an explicit expression for the metric form on the future Cauchy horizon in terms of the initial data on the past horizon and conclude the universal relation A\p A\f=(8\pi J)^2 where A\p and A\f are the areas of past and future Cauchy horizon respectively.Comment: 17 pages, 1 figur

    Non-uniqueness in conformal formulations of the Einstein constraints

    Get PDF
    Standard methods in non-linear analysis are used to show that there exists a parabolic branching of solutions of the Lichnerowicz-York equation with an unscaled source. We also apply these methods to the extended conformal thin sandwich formulation and show that if the linearised system develops a kernel solution for sufficiently large initial data then we obtain parabolic solution curves for the conformal factor, lapse and shift identical to those found numerically by Pfeiffer and York. The implications of these results for constrained evolutions are discussed.Comment: Arguments clarified and typos corrected. Matches published versio

    Geometric inequalities for axially symmetric black holes

    Full text link
    A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse, they are closed related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problem is presented.Comment: 65 pages, 5 figures. Review article, to appear in Class. Quantum Grav. as Topical Review. Improved presentation, minor corrections, references updat

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit

    Computing Gowdy spacetimes via spectral evolution in future and past directions

    Full text link
    We consider a system of nonlinear wave equations with constraints that arises from the Einstein equations of general relativity and describes the geometry of the so-called Gowdy symmetric spacetimes on T3. We introduce two numerical methods, which are based on pseudo-spectral approximation. The first approach relies on marching in the future time-like direction and toward the coordinate singularity t=0. The second approach is designed from asymptotic formulas that are available near this singularity; it evolves the solutions in the past timelike direction from "final" data given at t=0. This backward method relies a novel nonlinear transformation, which allows us to reduce the nonlinear source terms to simple quadratic products of the unknown variables. Numerical experiments are presented in various regimes, including cases where "spiky" structures are observed as the coordinate singularity is approached. The proposed backward strategy leads to a robust numerical method which allows us to accurately simulate the long-time behavior of a large class of Gowdy spacetimes.Comment: 19 pages, 12 figure
    • …
    corecore