3,212 research outputs found
A model for two-proton emission induced by electron scattering
A model to study two-proton emission processes induced by electron scattering
is developed. The process is induced by one-body electromagnetic operators
acting together with short-range correlations, and by two-body
currents. The model includes all the diagrams containing a single correlation
function. A test of the sensitivity of the model to the various theoretical
inputs is done. An investigation of the relevance of the currents is
done by changing the final state angular momentum, excitation energy and
momentum transfer. The sensitivity of the cross section to the details of the
correlation function is studied by using realistic and schematic correlations.
Results for C, O and Ca nuclei are presented.Comment: 30 pages, 18 figures, 3 table
Correlations and charge distributions of medium heavy nuclei
The effects of long- and short-range correlations on the charge distributions
of some medium and heavy nuclei are investigated. The long-range correlations
are treated within the Random Phase Approximation framework and the short-range
correlations with a model inspired to the Correlation Basis Function theory.
The two type of correlations produce effects of the same order of magnitude. A
comparison with the empirical charge distribution difference between 206Pb and
205Tl shows the need of including both correlations to obtain a good
description of the data.Comment: 20 pages, Latex, accepted for publication in Jour. Phys.
Superscaling in electroweak excitation of nuclei
Superscaling properties of 12C, 16O and 40Ca nuclear responses, induced by
electron and neutrino scattering, are studied for momentum transfer values
between 300 and 700 MeV/c. We have defined two indexes to have quantitative
estimates of the scaling quality. We have analyzed experimental responses to
get the empirical values of the two indexes. We have then investigated the
effects of finite dimensions, collective excitations, meson exchange currents,
short-range correlations and final state interactions. These effects strongly
modify the relativistic Fermi gas scaling functions, but they conserve the
scaling properties. We used the scaling functions to predict electron and
neutrino cross sections and we tested their validity by comparing them with the
cross sections obtained with a full calculation. For electron scattering we
also made a comparison with data. We have calculated the total charge-exchange
neutrino cross sections for neutrino energies up to 300 MeV.Comment: 19 pages, 12 figures, 1 table; to be published in Physical Review
APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) provides
the opportunity to measure elemental abundances for C, N, O, Na, Mg, Al, Si, P,
K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze the
chemical abundance patterns of these elements for 158 red giant stars belonging
to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars
with detailed chemical abundances and the first time C, N, P, K, V, Cr, Co, and
Ni have been studied at high-resolution in this galaxy. We find that the Sgr
stars with [Fe/H] -0.8 are deficient in all elemental abundance
ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that Sgr
stars observed today were formed from gas that was less enriched by Type II SNe
than stars formed in the Milky Way. By examining the relative deficiencies of
the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements,
our analysis supports the argument that previous generations of Sgr stars were
formed with a top-light IMF, one lacking the most massive stars that would
normally pollute the ISM with the hydrostatic elements. We use a simple
chemical evolution model, flexCE to further backup our claim and conclude that
recent stellar generations of Fornax and the LMC could also have formed
according to a top-light IMF.Comment: 14 pages, 12 figures, accepted for publication in Ap
Meson exchange currents in electromagnetic one-nucleon emission
The role of meson exchange currents (MEC) in electron- and photon-induced
one-nucleon emission processes is studied in a nonrelativistic model including
correlations and final state interactions. The nuclear current is the sum of a
one-body and of a two-body part. The two-body current includes pion seagull,
pion-in-flight and the isobar current contributions. Numerical results are
presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC
effects are in general rather small in (e,e'p), while in (\gamma,p) they are
always large and important to obtain a consistent description of (e,e'p) and
(\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p)
cross sections are sensitive to short-range correlations at high values of the
recoil momentum, where MEC effects are larger and overwhelm the contribution of
correlations.Comment: 9 pages, 6 figure
Knockout of proton-neutron pairs from O with electromagnetic probes
After recent improvements to the Pavia model of two-nucleon knockout from
O with electromagnetic probes the calculated cross sections are compared
to experimental data from such reactions. Comparison with data from a
measurement of the O(e,epn) reaction show much better agreement
between experiment and theory than was previously observed. In a comparison
with recent data from a measurement of the O(,pn) reaction the
model over-predicts the measured cross section at low missing momentum.Comment: 6 pages, 5 figure
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
Accounting for preemption and migration costs in the calculation of hard real-time cyclic executives for MPSoCs
This work introduces a methodology to consider preemption and migration overhead in hard real-time cyclic executives on multicore architectures. The approach performs two iterative stages. The first stage takes a cyclic executive, from which the number and timing of all preemptions and migrations for every task is known. Then, it includes this overhead by updating the worst-case execution time (WCET) of the tasks. The second stage calculates a new cyclic executive considering the new WCET of tasks. The stages iterate until the preemption and migration overhead keeps constant. © 2016 IEEE
Longitudinal and Transverse Quasi-Elastic Response Functions of Light Nuclei
The He and He longitudinal and transverse response functions are
determined from an analysis of the world data on quasi-elastic inclusive
electron scattering. The corresponding Euclidean response functions are derived
and compared to those calculated with Green's function Monte Carlo methods,
using realistic interactions and currents. Large contributions associated with
two-body currents are found, particularly in the He transverse response, in
agreement with data. The contributions of two-body charge and current operators
in the He, He, and Li response functions are also studied via
sum-rule techniques. A semi-quantitative explanation for the observed
systematics in the excess of transverse quasi-elastic strength, as function of
mass number and momentum transfer, is provided. Finally, a number of model
studies with simplified interactions, currents, and wave functions is carried
out to elucidate the role played, in the full calculation, by tensor
interactions and correlations.Comment: 40 pages, 11 figures, submitted to Phys. Rev.
- …
