64 research outputs found
Enhanced ferroelectric polarization by induced Dy spin-order in multiferroic DyMnO3
Neutron powder diffraction and single crystal x-ray resonant magnetic
scattering measurements suggest that Dy plays an active role in enhancing the
ferroelectric polarization in multiferroic DyMnO3 above TNDy = 6.5 K. We
observe the evolution of an incommensurate ordering of Dy moments with the same
periodicity as the Mn spiral ordering. It closely tracks the evolution of the
ferroelectric polarization which reaches a maximum value of 0.2 muC/m^2. Below
TNDy, where Dy spins order commensurately, the polarization decreases to values
similar for those of TbMnO3
The structure of intercalated water in superconducting NaCoO1.37DO: Implications for the superconducting phase diagram
We have used electron and neutron powder diffraction to elucidate the
structural properties of superconducting \NaD. Our measurements show that our
superconducting sample exhbits a number of supercells ranging from
to , but the most predominant one, observed also in the neutron
data, is a double hexagonal cell with dimensions \dhx. Rietveld analysis
reveals that \deut\space is inserted between CoO sheets as to form a
layered network of NaO triangular prisms. Our model removes the need to
invoke a 5K superconducting point compound and suggests that a solid solution
of Na is possible within a constant amount of water .Comment: 4 pages, 3 figure
Magnetic field induced effects on the electric polarization in RMnO3 R Dy,Gd
X-ray resonant magnetic scattering studies of rare earth magnetic ordering
were performed on perovskite manganites RMnO3 (R = Dy, Gd) in an applied
magnetic field. The data reveal that the field-induced three-fold polarization
enhancement for H || a (H approx. 20 kOe) observed in DyMnO3 below 6.5 K is due
to a re-emergence of the Mn-induced Dy spin order with propagation vector k(Dy)
= k(Mn) = 0.385 b*, which accompanies the suppression of the independent Dy
magnetic ordering, k(Dy) = 1/2 b*. For GdMnO3, the Mn-induced ordering of Gd
spins is used to track the Mn-ordering propagation vector. The data confirm the
incommensurate ordering reported previously, with k(Mn) varying from 0.245 to
0.16 b* on cooling from T_N(Mn) down to a transition temperature T'. New
superstructure reflections which appear below T' suggest a propagation vector
k(Mn) = 1/4 b* in zero magnetic field, which may coexist with the previously
reported A-type ordering of Mn. The Gd spins order with the same propagation
vector below 7 K. Within the ordered state of Gd at T = 1.8 K we find a phase
boundary for an applied magnetic field H || b, H = 10 kOe, which coincides with
the previously reported transition between the ground state paraelectric and
the ferroelectric phase of GdMnO3. Our results suggest that the magnetic
ordering of Gd in magnetic field may stabilize a cycloidal ordering of Mn that,
in turn, produces ferroelectricity.Comment: 8 Figures, v2: improved figure layou
New features in the phase diagram of TbMnO
The (H,T)-phase diagram of the multiferroic perovskite TbMnO was studied
by high-resolution thermal expansion and magnetostriction measurements. Below K, TbMnO shows
antiferromagnetic order, which changes at K where
simultaneously a spontaneous polarization develops. Sufficiently high
magnetic fields applied along or induce a polarization flop to .
We find that all of these transitions are strongly coupled to the lattice
parameters. Thus, our data allow for a precise determination of the phase
boundaries and also yield information about their uniaxial pressure
dependencies. The strongly hysteretic phase boundary to the ferroelectric phase
with is derived in detail. Contrary to previous reports, we find that
even in high magnetic fields there are no direct transitions from this phase to
the paraelectric phase. We also determine the various phase boundaries in the
low-temperature region related to complex reordering transitions of the Tb
moments.Comment: 17 pages including 9 figure
MOMP from Campylobacter jejuni Is a Trimer of 18-Stranded ÎČ-Barrel Monomers with a CaÂČâș Ion Bound at the Constriction Zone
The Gram-negative organism Campylobacter jejuni is the major cause of food poisoning. Unlike Escherichia coli, which has two major porins, OmpC and OmpF, C. jejuni has one, termed major outer membrane protein (MOMP) through which nutrients and antibiotics transit. We report the 2.1-Ă
crystal structure of C. jejuni MOMP expressed in E. coli and a lower resolution but otherwise identical structure purified directly from C. jejuni. The 2.1-Ă
resolution structure of recombinant MOMP showed that although the protein has timeric arrangement similar to OmpC, it is an 18-stranded, not 16-stranded, ÎČ-barrel. The structure has identified a CaÂČâș bound at the constriction zone, which is functionally significant as suggested by molecular dynamics and single-channel experiments. The water-filled channel of MOMP has a narrow constriction zone, and single-molecule studies show a monomeric conductivity of 0.7 ± 0.2 nS and a trimeric conductance of 2.2 ± 0.2 nS. The ion neutralizes negative charges at the constriction zone, reducing the transverse electric field and reversing ion selectivity. Modeling of the transit of ciprofloxacin, an antibiotic of choice for treating Campylobacter infection, through the pore of MOMP reveals a trajectory that is dependent upon the presence metal ion
Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency
Bumblebees and other pollinators provide a vital ecosystem service for the agricultural sector. Recent studies however have suggested that exposure to systemic neonicotinoid insecticides in flowering crops has sub-lethal effects on the bumblebee workforce, and hence in reducing queen production. The mechanism behind reduced nest performance, however, remains unclear. Here we use Radio Frequency Identification (RFID) technology to test whether exposure to a low, field realistic dose (0.7 ppb in sugar water and 6 ppb in pollen) of the neonicotinoid imidacloprid, reduces worker foraging efficiency. Whilst the nectar foraging efficiency of bees treated with imidacloprid was not significantly different than that of control bees, treated bees brought back pollen less often than control bees (40 % of trips vs 63 % trips, respectively) and, where pollen was collected, treated bees brought back 31 % less pollen per hour than controls. This study demonstrates that field-realistic doses of these pesticides substantially impacts on foraging ability of bumblebee workers when collecting pollen, and we suggest that this provides a causal mechanism behind reduced queen production in imidacloprid exposed colonies
Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae
International audienceBACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation
- âŠ