20,056 research outputs found

    Toward a Neutrino Mass Matrix

    Get PDF
    One may identify the general properties of the neutrino mass matrix by generating many random mass matrices and testing them against the results of the neutrino experiments.Comment: 3 pages, 1 figure, talk at DPF200

    Study of dominating parameters of high speed solar plasma streams in relation to cosmic ray and geomagnetic storms

    Get PDF
    The high speed solar wind streams observed near Earth are generally associated with the solar features, such as solar flares and coronal holes. Past studies of these streams from the two sources have revealed distinctly different effects on cosmic ray intensity, whereas the effect is similar for geomagnetic disturbances. Moreover, the effect of the magnitude of the high speed streams (V) and its rate of increase (dv/dt) has also been a subject of investigation to understand their relative contribution in producing geomagnetic disturbances. From the analysis of some of the fast streams presented here, it is difficult to predict, which one of the two (V, dv/dt) is more effective in producing geo-magnetic disturbances. Further, in most of the cases, no substantial decrease in cosmic ray intensity is observed

    Management and Performance of APPLE Battery in High Temperature Environment

    Get PDF
    India's first experimental communication satellite, APPLE, carried a 12 AH Ni-Cd battery for supplying power during eclipse. Failure to deploy one of the two solar panels resulted in the battery operating in a high temperature environment, around 40 C. This also resulted in the battery being used in diurnal cycles rather than just half yearly eclipse seasons. The management and performance of the battery during its life of two years are described. An attempt to identify the probable degradation mechanisms is also made

    The refractive index and wave vector in passive or active media

    Full text link
    Materials that exhibit loss or gain have a complex valued refractive index nn. Nevertheless, when considering the propagation of optical pulses, using a complex nn is generally inconvenient -- hence the standard choice of real-valued refractive index, i.e. n_s = \RealPart (\sqrt{n^2}). However, an analysis of pulse propagation based on the second order wave equation shows that use of nsn_s results in a wave vector \emph{different} to that actually exhibited by the propagating pulse. In contrast, an alternative definition n_c = \sqrt{\RealPart (n^2)}, always correctly provides the wave vector of the pulse. Although for small loss the difference between the two is negligible, in other cases it is significant; it follows that phase and group velocities are also altered. This result has implications for the description of pulse propagation in near resonant situations, such as those typical of metamaterials with negative (or otherwise exotic) refractive indices.Comment: Phys. Rev. A, to appear (2009

    Fermionic bright soliton in a boson-fermion mixture

    Full text link
    We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic bright solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a quasi-one-dimensional cigar-shaped geometry. Due to a strong Pauli-blocking repulsion among spin-polarized fermions at short distances there cannot be bright fermionic solitons in the case of repulsive boson-fermion interactions. However, we demonstrate that stable bright fermionic solitons can be formed for a sufficiently attractive boson-fermion interaction in a boson-fermion mixture. We also consider the formation of fermionic solitons in the presence of a periodic axial optical-lattice potential. These solitons can be formed and studied in the laboratory with present technology.Comment: 7 pages, 7 ps figure

    Probabilistic Super Dense Coding

    Full text link
    We explore the possibility of performing super dense coding with non-maximally entangled states as a resource. Using this we find that one can send two classical bits in a probabilistic manner by sending a qubit. We generalize our scheme to higher dimensions and show that one can communicate 2log_2 d classical bits by sending a d-dimensional quantum state with a certain probability of success. The success probability in super dense coding is related to the success probability of distinguishing non-orthogonal states. The optimal average success probabilities are explicitly calculated. We consider the possibility of sending 2 log_2 d classical bits with a shared resource of a higher dimensional entangled state (D X D, D > d). It is found that more entanglement does not necessarily lead to higher success probability. This also answers the question as to why we need log_2 d ebits to send 2 log_2 d classical bits in a deterministic fashion.Comment: Latex file, no figures, 11 pages, Discussion changed in Section

    Correlations in the properties of static and rapidly rotating compact stars

    Full text link
    Correlations in the properties of the static compact stars (CSs) and the ones rotating with the highest observed frequency of 1122Hz are studied using a large set of equations of state (EOSs). These EOSs span various approaches and their chemical composition vary from the nucleons to hyperons and quarks in β\beta-equilibrium. It is found that the properties of static CS, like, the maximum gravitational mass MmaxstatM_{\rm max}^{\rm stat} and radius R1.4statR_{1.4}^{\rm stat} corresponding to t he canonical mass and supramassive or non-supramassive nature of the CS rotating at 1122 Hz are strongly correlated. In particular, only those EOSs yield the CS rotating at 1122Hz to be non-supramassive for which \left (\frac{M_{\rm max}^{\rm stat}}{M_\odot}\right )^{1/2} \left (\frac{10{\rm km}}{R_{1.4}^{\rm stat}})^{3/2} is greater than unity. Suitable parametric form which can be used to split the MmaxstatM_{\rm max}^{\rm stat} - R1.4statR_{1.4}^{\rm stat} plane into the regions of different supramassive nature of the CS rotating at 1122Hz is presented. Currently measured maximum gravitational mass 1.76MM_\odot of PSR J0437-4715 suggests that the CS rotating at 1122Hz can be non-supramassive provided R1.4stat12.4R_{1.4}^{\rm stat} \leqslant 12.4 km.Comment: 13 pages, 4 figures, Appearing in Phys. Rev.
    corecore