392 research outputs found

    The FXR agonist obeticholic acid inhibits the cancerogenic potential of human cholangiocarcinoma

    Get PDF
    Cholangiocarcinoma (CCA) is an aggressive cancer with high resistance to chemotherapeutics. CCA is enriched in cancer stem cells, which correlate with aggressiveness and prognosis. FXR, a member of the metabolic nuclear receptor family, is markedly down-regulated in human CCA. Our aim was to evaluate, in primary cultures of human intrahepatic CCA (iCCA), the effects of the FXR agonist obeticholic acid (OCA), a semisynthetic bile acid derivative, on their cancerogenic potential. Primary human iCCA cell cultures were prepared from surgical specimens of mucinous or mixed iCCA subtypes. Increasing concentrations (0–2.5 μM) of OCA were added to culture media and, after 3–10 days, effects on proliferation (MTS assay, cell population doubling time), apoptosis (annexin V-FITC/propidium iodide), cell migration and invasion (wound healing response and Matrigel invasion assay), and cancerogenic potential (spheroid formation, clonogenic assay, colony formation capacity) were evaluated. Results: FXR gene expression was downregulated (RT-qPCR) in iCCA cells vs normal human biliary tree stem cells (p < 0.05) and in mucinous iCCA vs mixed iCCA cells (p < 0.05) but was upregulated by addition of OCA. OCA significantly (p < 0.05) inhibited proliferation of both mucinous and mixed iCCA cells, starting at a concentration as low as 0.05 μM. Also, CDCA (but not UDCA) inhibited cell proliferation, although to a much lower extent than OCA, consistent with its different affinity for FXR. OCA significantly induced apoptosis of both iCCA subtypes and decreased their in vitro cancerogenic potential, as evaluated by impairment of colony and spheroid formation capacity and delayed wound healing and Matrigel invasion. In general, these effects were more evident in mixed than mucinous iCCA cells. When tested together with Gemcitabine and Cisplatin, OCA potentiated the anti-proliferative and pro-apoptotic effects of these chemotherapeutics, but mainly in mixed iCCA cells. OCA abolished the capacity of both mucinous and mixed iCCA cells to form colonies when administered together with Gemcitabine and Cisplatin. In subcutaneous xenografts of mixed iCCA cells, OCA alone or combined with Gemcitabine or Cisplatin markedly reduced the tumor size after 5 weeks of treatment by inducing necrosis of tumor mass and inhibiting cell proliferation. In conclusion, FXR is down-regulated in iCCA cells, and its activation by OCA results in anti-cancerogenic effects against mucinous and mixed iCCA cells, both in vitro and in vivo. The effects of OCA predominated in mixed iCCA cells, consistent with the lower aggressiveness and the higher FXR expression in this CCA subtype. These results, showing the FXR-mediated capacity of OCA to inhibit cholangiocarcinogenesis, represent the basis for testing OCA in clinical trials of CCA patients

    Mechanisms influencing the immunodominance of T cell determinants.

    Full text link

    On the Wegener granulomatosis associated region on chromosome 6p21.3

    Get PDF
    BACKGROUND: Wegener granulomatosis (WG) belongs to the heterogeneous group of systemic vasculitides. The multifactorial pathophysiology of WG is supposedly caused by yet unknown environmental influence(s) on the basis of genetic predisposition. The presence of anti-neutrophil cytoplasmic antibodies (ANCA) in the plasma of patients and genetic involvement of the human leukocyte antigen system reflect an autoimmune background of the disease. Strong associations were revealed with WG by markers located in the major histocompatibility complex class II (MHC II) region in the vicinity of human leukocyte antigen (HLA)-DPB1 and the retinoid X receptor B (RXRB) loci. In order to define the involvement of the 6p21.3 region in WG in more detail this previous population-based association study was expanded here to the respective 3.6 megabase encompassing this region on chromosome 6. The RXRB gene was analysed as well as a splice-site variation of the butyrophilin-like (BTNL2) gene which is also located within the respective region. The latter polymorphism has been evaluated here as it appears as a HLA independent susceptibility factor in another granulomatous disorder, sarcoidosis. METHODS: 150–180 German WG patients and a corresponding cohort of healthy controls (n = 100–261) were used in a two-step study. A panel of 94 microsatellites was designed for the initial step using a DNA pooling approach. Markers with significantly differing allele frequencies between patient and control pools were individually genotyped. The RXRB gene was analysed for single strand conformation polymorphisms (SSCP) and restriction fragment length polymorphisms (RFLP). The splice-site polymorphism in the BTNL2 gene was also investigated by RFLP analysis. RESULTS: A previously investigated microsatellite (#1.0.3.7, Santa Cruz genome browser (UCSC) May 2004 Freeze localisation: chr6:31257596-34999883), which was used as a positive control, remained associated throughout the whole two-step approach. Yet, no additional evidence for association of other microsatellite markers was found in the entire investigated region. Analysis of the RXRB gene located in the WG associated region revealed associations of two variations (rs10548957 p(allelic )= 0.02 and rs6531 p(allelic )= 5.20 × 10(-5), OR = 1.88). Several alleles of markers located between HLA-DPB1, SNP rs6531 and microsatellite 1.0.3.7 showed linkage disequilibrium with r(2 )values exceeding 0.10. Significant differences were not demonstrable for the sarcoidosis associated splice-site variation (rs2076530 p(allelic )= 0.80) in our WG cohort. CONCLUSION: Since a microsatellite flanking the RXRB gene and two intragenic polymorphisms are associated significantly with WG on chromosome 6p21.3, further investigations should be focussed on extensive fine-mapping in this region by densely mapping with additional markers such as SNPs. This strategy may reveal even deeper insights into the genetic contributions of the respective region for the pathogenesis of WG

    Interleukin-10 Overexpression Promotes Fas-Ligand-Dependent Chronic Macrophage-Mediated Demyelinating Polyneuropathy

    Get PDF
    BACKGROUND:Demyelinating polyneuropathy is a debilitating, poorly understood disease that can exist in acute (Guillain-Barré syndrome) or chronic forms. Interleukin-10 (IL-10), although traditionally considered an anti-inflammatory cytokine, has also been implicated in promoting abnormal angiogenesis in the eye and in the pathobiology of autoimmune diseases such as lupus and encephalomyelitis. PRINCIPAL FINDINGS:Overexpression of IL-10 in a transgenic mouse model leads to macrophage-mediated demyelinating polyneuropathy. IL-10 upregulates ICAM-1 within neural tissues, promoting massive macrophage influx, inflammation-induced demyelination, and subsequent loss of neural tissue resulting in muscle weakness and paralysis. The primary insult is to perineural myelin followed by secondary axonal loss. Infiltrating macrophages within the peripheral nerves demonstrate a highly pro-inflammatory signature. Macrophages are central players in the pathophysiology, as in vivo depletion of macrophages using clodronate liposomes reverses the phenotype, including progressive nerve loss and paralysis. Macrophage-mediate demyelination is dependent on Fas-ligand (FasL)-mediated Schwann cell death. SIGNIFICANCE:These findings mimic the human disease chronic idiopathic demyelinating polyneuropathy (CIDP) and may also promote further understanding of the pathobiology of related conditions such as acute idiopathic demyelinating polyneuropathy (AIDP) or Guillain-Barré syndrome

    Vitamin D receptor gene polymorphisms in multiple sclerosis patients in northwest Greece

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms of the vitamin D receptor (VDR) gene have been linked to both multiple sclerosis (MS) and osteoporosis. We examined the frequency of the Taq-I and Bsm-I polymorphisms of the vitamin D receptor (VDR) gene in 69 patients with MS and 81 age and sex-matched healthy individuals. Genotyping of Taq-I (rs731236) and Bsm-I (rs1544410) was performed using TaqMan<sup>® </sup>SNP Genotyping Assay. All patients and controls had determination of body mass index (BMI), bone mineral density (BMD) and smoking history.</p> <p>Results</p> <p>The mean age of patients was 39 ± 10.5 years compared to 38.7 ± 10.7 years of the controls (p = 0.86), the BMI was 24.8 ± 4.2 kg/m<sup>2 </sup>compared to 25.7 ± 4.8 kg/m<sup>2 </sup>of the controls (p = 0.23), the BMD in the lumbar spine 0.981 ± 0.15 compared to 1.025 ± 013 of the controls (p = 0.06) and the total hip BMD was 0.875 ± 0.14 compared to 0.969 ± 0.12 of the controls (p < 0.001). There were no differences of the Taq-I (TT, CT, CC) and Bsm-I genotypes (GG, GA, AA) and allelic frequencies between MS and control individuals. Multivariate analysis also failed to show any association of the Taq-I and Bsm-I polymorphisms and MS or sex, BMI, BMD and smoking history.</p> <p>Conclusions</p> <p>This study suggests that the Taq-I and Bsm-I polymorphisms of the VDR gene are not associated with MS risk, BMI or BMD in the Greek population studied.</p
    corecore