118 research outputs found

    Second-order nonlinear optical properties induced by thermal poling in photonic oxide glasses and transparent glass-ceramics

    No full text
    In recent years there has been a resurgence of interest in oxide glasses due to advances in lasers for information transport. Oxide glasses combine low cost of fabrication and good compatibility with silica glass fibers, which offer the opportunity for developing structures with nonlinear optical properties in integrated optical devices. The creation of an axial symmetry under thermal poling is currently necessary to induce Second-Order NonLinear (SONL) optical properties in glasses. A description of theoretical models which have been proposed for charge migration during thermal poling is presented. A review of SONL efficiencies which have been obtained for different glass compositions by this method is reported. Correlations between SONL properties and structural modifications under poling are also presented. Finally, we focus on the challenging fabrication of transparent glass-ceramic composites, especially when they are obtained by the precipitation of ferroelectric nanoparticle phases in the glassy matrix which adds the advantageous SONL properties of ferroelectric crystals

    Couplings of N=1 chiral spinor multiplets

    Full text link
    We derive the action for chiral spinor multiplets coupled to vector and scalar multiplets. We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric tensors in the spinor superfield and additional Green-Schwarz couplings to vector fields. We observe that supersymmetry provides mass terms for the scalars in the spinor multiplet which do not arise from eliminating an auxiliary field. We construct the dual action by explicitly performing the duality transformations in superspace and give its component form.Comment: 17 pages, v2 small change

    Gaugino Condensation with S-Duality and Field-Theoretical Threshold Corrections

    Get PDF
    We study gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, we include in the K\"ahler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behaviour of the dilaton arises which we attribute to S-duality. We also discuss the effects of the intermediate scale, and possible phenomenological implications of this model.Comment: 19 pages, LaTeX, 3 postscript figures include

    Simpler and more efficient strategy to stabilize the chromophore orientation in electro-optic polymers with copper-free thermal Huisgen reaction

    Get PDF
    A new strategy is proposed to stabilize the electro-optic (EO) activity of second-order materials using copper-free thermal Huisgen 1,3-dipolar cross-linking reaction. It consists in freezing the chromophores orientation after the poling process by a cross-linking reaction based on the 1,3-dipolar cycloaddition between an azide and an alkyne. To reach this goal, the synthesis of new methacrylate type polymers bearing a derivative of Disperse Red 1 chromophore was performed. The polymeric structure is bearing a cross-linkable function on its backbone and the complementary reactive function is brought by a small molecule called “doping agent” (DA), containing several complementary cross-linking groups, evenly distributed in the polymer film. Materials have been prepared and exhibit large second-order nonlinear optical coefficients (d33) up to 60 pm/V at the fundamental wavelength of 1064 nm. Moreover, the thermal stability of the orientation of the chromophores could reach 150 °C upon cross-linking with such materials, which is higher than previously described cross-linkable EO polymers based on this reaction. Furthermore, this new strategy widens the possibilities offered by copper-free thermal Huisgen 1,3-dipolar cycloaddition as cross-linking reaction for EO polymers

    Synthesis and second-order nonlinear optical properties of a crosslinkable functionalized hyperbranched polymer

    Get PDF
    A new implementation of copper-free thermal Huisgen 1,3-dipolar crosslinking reaction into a high Tg hyperbranched polyimide polymer in order to stabilize the electro-optic (EO) activity of second-order non linear materials is reported. Towards this goal, two different synthetic approaches were explored. The first strategy is based on the post-functionalization of the polymer with mixtures of DR1 azido derivative and propargylic alcohol, whereas, the second consists in the preparation of two complementary functionalized hyperbranched polymers that are mixed just before the preparation of films. Materials exhibit good second-order nonlinear optical coefficients (d33) close to 30 pm/V at the fundamental wavelength of 1064 nm. Moreover, the thermal stability of the NLO properties of these materials reaches temperatures as high as 150°C, and probably higher. This represents the highest thermal stability of crosslinkable EO polymers based on the crosslinking Huisgen reaction

    Gaugino Condensation in N=1 Supergravity Models with Multiple Dilaton-Like Fields

    Get PDF
    We study supersymmetry breaking by hidden-sector gaugino condensation in N=1 D=4 supergravity models with multiple dilaton-like moduli fields. Our work is motivated by Type I string theory, in which the low-energy effective Lagrangian can have different dilaton-like fields coupling to different sectors of the theory. We construct the effective Lagrangian for gaugino condensation and use it to compute the visible-sector gaugino masses. We find that the gaugino masses can be of order the gravitino mass, in stark contrast to heterotic string models with a single dilaton field.Comment: LaTeX, 17 pages, 2 eps figure

    Circulating Micro-RNAs as Potential Blood-Based Markers for Early Stage Breast Cancer Detection

    Get PDF
    INTRODUCTION: MicroRNAs (miRNAs, miRs) are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls. METHODS: We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR) validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718). RESULTS: Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202. CONCLUSIONS: MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to establish these new biomarkers in clinical use

    One-loop Regularization of Supergravity II: The Dilaton and the Superfield Formulation

    Full text link
    The on-shell regularization of the one-loop divergences of supergravity theories is generalized to include a dilaton of the type occurring in effective field theories derived from superstring theory, and the superfield structure of the one-loop corrections is given. Field theory anomalies and quantum contributions to soft supersymmetry breaking are discussed. The latter are sensitive to the precise choice of couplings that generate Pauli-Villars masses, which in turn reflect the details of the underlying theory above the scale of the effective cut-off. With a view to the implementation the Green-Schwarz and other mechanisms for canceling field theory anomalies under a U(1) gauge transformation and under the T-duality group of modular transformations, we show that the K\"ahler potential renormalization for the untwisted sector of orbifold compactification can be made invariant under these groups.Comment: 46 pages, full postscript also available from http://phyweb.lbl.gov/theorygroup/papers/43259.p

    One-Loop Pauli-Villars Regularization of Supergravity I: Canonical Gauge Kinetic Energy

    Get PDF
    It is shown that the one-loop coefficients of on-shell operators of standard supergravity with canonical gauge kinetic energy can be regulated by the introduction of Pauli-Villars chiral and abelian gauge multiplets, subject to a condition on the matter representations of the gauge group. Aspects of the anomaly structure of these theories under global nonlinear symmetries and an anomalous gauge symmetry are discussed.Comment: 46 pages, full postscript also available from http://phyweb.lbl.gov/theorygroup/papers/preprints.html/41981.ps . Misprints and errors in equations present in the original version have been correcte

    Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes

    Get PDF
    Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health
    • …
    corecore