6,477 research outputs found

    Local entrainment velocity in a premixed turbulent annular jet flame

    Get PDF
    The local entrainment velocity of the enstrophy interfaces of a methane-air turbulent premixed turbulent annular jet flame stabilized on a bluff-body burner has been investigated using a high-fidelity flame-resolved three-dimensional simulation. The enstrophy (inner and outer) and the scalar interfaces have been defined and characterized by their propagation speeds, VE and Sd , relative to the fluid flow. Mean values ( and ) conditioned on the reaction progress variable c have been obtained. A thin layer (near the enstrophy interfaces) has been used to compute mean values (, , and its different contributions) conditional upon enstrophy E. At the inner interface, results indicate that . Sd |. E> > 0 (entrainment of fresh reactants into the flame front and hot products), while < 0 and < 0 (entrainment of hot products into the reacting jet across the inner enstrophy interface). The outer enstrophy interface displays > 0 (ambient gases are predominantly entrained into the jet of reactants), which implies a lean mixture in its neighborhood. These preliminary results aim at understanding the physical mechanisms of flame anchoring, in terms of entrainments of either hot products or fresh reactants into the diffusive-reactive region. Local geometries of the inner and outer interfaces have also been examined, through the computation of joint probability density functions of the mean curvature km and Gauss curvature kg of the iso-enstrophy surfaces, and through |. km, kg at the inner and outer interfaces. This information has subsequently been used to discuss the physics of how the turbulent entrainment process affects premixed flames

    Anaerobic Methane Oxidation in a Landfill-Leachate Plume

    Get PDF
    The alluvial aquifer adjacent to Norman Landfill, OK, provides an excellent natural laboratory for the study of anaerobic processes impacting landfill-leachate contaminated aquifers. We collected groundwaters from a transect of seven multilevel wells ranging in depth from 1.3 to 11 m that were oriented parallel to the flow path. The center of the leachate plume was characterized by (1) high alkalinity and elevated concentrations of total dissolved organic carbon, reduced iron, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (δ13C) values suggest anaerobic methane oxidation was occurring within the plume and at its margins. Methane δ13C values increased from about -54‰ near the source to >-10‰ downgradient and at the plume margins. The isotopic fractionation associated with this methane oxidation was -13.6±1.0‰. Methane 13C enrichment indicated that 80-90% of the original landfill methane was oxidized over the 210-m transect. Firstorder rate constants ranged from 0.06 to 0.23 per year, and oxidation rates ranged from 18 to 230µM/y. Overall, hydrochemical data suggest that a sulfate reducermethanogen consortium may mediate this methane oxidation. These results demonstrate that natural attenuation through anaerobic methane oxidation can be an important sink for landfill methane in aquifer systems

    Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids

    Get PDF
    Chromosome pairing in the meiotic metaphase I of wheatrye hybrids has been characterized by sequential genomic and fluorescent in situ hybridization allowing not only the discrimination of wheat and rye chromosomes, but also the identification of the individual wheat and rye chromosome arms involved in the chromosome associations. The majority of associations (93.8%) were observed between the wheat chromosomes. The largest number of wheat-wheat chromosome associations (53%) was detected between the A and D genomes, while the frequency of B-D and A-B associations was significantly lower (32 and 8%, respectively). Among the A-D chromosome associations, pairing between the 3AL and 3DL arms was observed with the highest frequency, while the most frequent of all the chromosome associations (0.113/ cell) was found to be the 3DS-3BS. Differences in the pairing frequency of the individual chromosome arms of wheat-rye hybrids have been discussed in relation to the homoeologous relationships between the constituent genomes of hexaploid wheat

    Impact of Extreme Obesity and Diet-Induced Weight Loss on the Fecal Metabolome and Gut Microbiota

    Get PDF
    Scope: A limited number of human studies have characterized fecal microbiota and metabolome in extreme obesity and after diet-induced weight loss. Methods and results: Fecal samples from normal-weight and extremely obese adults and from obese participants before and after moderate diet-induced weight loss are evaluated for their interaction with the intestinal adenocarcinoma cell line HT29 using an impedance-based in vitro model, which reveals variations in the interaction between the gut microbiota and host linked to obesity status. Microbiota composition, short chain fatty acids, and other intestinal metabolites are further analyzed to assess the interplay among diet, gut microbiota, and host in extreme obesity. Microbiota profiles are distinct between normal-weight and obese participants and are accompanied by fecal signatures in the metabolism of biliary compounds and catecholamines. Moderate diet-induced weight loss promotes shifts in the gut microbiota, and the primary fecal metabolomics features are associated with diet and the gut–liver and gut–brain axes. Conclusions: Analyses of the fecal microbiota and metabolome enable assessment of the impact of diet on gut microbiota composition and activity, supporting the potential use of certain fecal metabolites or members of the gut microbiota as biomarkers for the efficacy of weight loss in extreme obesity
    • …
    corecore