32 research outputs found

    Association of interleukin-1 gene variations with moderate to severe chronic periodontitis in multiple ethnicities

    Get PDF
    Background and ObjectiveGenetic markers associated with disease are often non-functional and generally tag one or more functional “causative” variants in linkage disequilibrium. Markers may not show tight linkage to the causative variants across multiple ethnicities due to evolutionary divergence, and therefore may not be informative across different population groups. Validated markers of disease suggest causative variants exist in the gene and, if the causative variants can be identified, it is reasonable to hypothesize that such variants will be informative across diverse populations. The aim of this study was to test that hypothesis using functional Interleukin-1 (IL-1) gene variations across multiple ethnic populations to replace the non-functional markers originally associated with chronic adult periodontitis in Caucasians.Material and MethodsAdult chronic periodontitis cases and controls from four ethnic groups (Caucasians, African Americans, Hispanics and Asians) were recruited in the USA, Chile and China. Genotypes of IL1B gene single nucleotide polymorphisms (SNPs), including three functional SNPs (rs16944, rs1143623, rs4848306) in the promoter and one intronic SNP (rs1143633), were determined using a single base extension method or TaqMan 5′ nuclease assay. Logistic regression and other statistical analyses were used to examine the association between moderate to severe periodontitis and IL1B gene variations, including SNPs, haplotypes and composite genotypes. Genotype patterns associated with disease in the discovery study were then evaluated in independent validation studies.ResultsSignificant associations were identified in the discovery study, consisting of Caucasians and African Americans, between moderate to severe adult chronic periodontitis and functional variations in the IL1B gene, including a pattern of four IL1B SNPs (OR = 1.87, p < 0.0001). The association between the disease and this IL1B composite genotype pattern was validated in two additional studies consisting of Hispanics (OR = 1.95, p = 0.04) or Asians (OR = 3.27, p = 0.01). A meta-analysis of the three populations supported the association between the IL-1 genotype pattern and moderate to severe periodontitis (OR 1.95; p < 0.001). Our analysis also demonstrated that IL1B gene variations had added value to conventional risk factors in predicting chronic periodontitis.ConclusionThis study validated the influence of IL-1 genetic factors on the severity of chronic periodontitis in four different ethnicities

    Directedness of Information Flow in Mobile Phone Communication Networks

    Get PDF
    Without having direct access to the information that is being exchanged, traces of information flow can be obtained by looking at temporal sequences of user interactions. These sequences can be represented as causality trees whose statistics result from a complex interplay between the topology of the underlying (social) network and the time correlations among the communications. Here, we study causality trees in mobile-phone data, which can be represented as a dynamical directed network. This representation of the data reveals the existence of super-spreaders and super-receivers. We show that the tree statistics, respectively the information spreading process, are extremely sensitive to the in-out degree correlation exhibited by the users. We also learn that a given information, e.g., a rumor, would require users to retransmit it for more than 30 hours in order to cover a macroscopic fraction of the system. Our analysis indicates that topological node-node correlations of the underlying social network, while allowing the existence of information loops, they also promote information spreading. Temporal correlations, and therefore causality effects, are only visible as local phenomena and during short time scales. Consequently, the very idea that there is (intentional) information spreading beyond a small vecinity is called into question. These results are obtained through a combination of theory and data analysis techniques

    Physiological Properties of Cholinergic and Non-Cholinergic Magnocellular Neurons in Acute Slices from Adult Mouse Nucleus Basalis

    Get PDF
    The basal forebrain is a series of nuclei that provides cholinergic input to much of the forebrain. The most posterior of these nuclei, nucleus basalis, provides cholinergic drive to neocortex and is involved in arousal and attention. The physiological properties of neurons in anterior basal forebrain nuclei, including medial septum, the diagonal band of Broca and substantia innominata, have been described previously. In contrast the physiological properties of neurons in nucleus basalis, the most posterior nucleus of the basal forebrain, are unknown.Here we investigate the physiological properties of neurons in adult mouse nucleus basalis. We obtained cell-attached and whole-cell recordings from magnocellular neurons in slices from P42-54 mice and compared cholinergic and non-cholinergic neurons, distinguished retrospectively by anti-choline acetyltransferase immunocytochemistry. The majority (70-80%) of cholinergic and non-cholinergic neurons were silent at rest. Spontaneously active cholinergic and non-cholinergic neurons exhibited irregular spiking at 3 Hz and at 0.3 to 13.4 Hz, respectively. Cholinergic neurons had smaller, broader action potentials than non-cholinergic neurons (amplitudes 64+/-3.4 and 75+/-2 mV; half widths 0.52+/-0.04 and 0.33+/-0.02 ms). Cholinergic neurons displayed a more pronounced slow after-hyperpolarization than non-cholinergic neurons (13.3+/-2.2 and 3.6+/-0.5 mV) and were unable to spike at high frequencies during tonic current injection (maximum frequencies of approximately 20 Hz and >120 Hz).Our results indicate that neurons in nucleus basalis share similar physiological properties with neurons in anterior regions of the basal forebrain. Furthermore, cholinergic and non-cholinergic neurons in nucleus basalis can be distinguished by their responses to injected current. To our knowledge, this is the first description of the physiological properties of cholinergic and non-cholinergic neurons in the posterior aspects of the basal forebrain complex and the first study of basal forebrain neurons from the mouse

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^(18) eV

    Get PDF
    We describe the measurement of the depth of maximum, X_(max), of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10^(18) eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106_(-21)^(+35)) g/cm^2/decade below 10^(18:24±0.05) eV, and (24±3) g/cm^ 2=decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed
    corecore