1,010 research outputs found

    A note on the practical feasibility of domain-wall fermions

    Get PDF
    Domain-wall fermions preserve chiral symmetry up to terms that decrease exponentially when the lattice size in the fifth dimension is taken to infinity. The associated rates of convergence are given by the low-lying eigenvalues of a simple local operator in four dimensions. These can be computed using the Ritz functional technique and it turns out that the convergence tends to be extremely slow in the range of lattice spacings relevant to large-volume numerical simulations of lattice QCD. Two methods to improve on this situation are discussed.Comment: 14 pages, talk given by P. H. at the workshop on {\em Current theoretical problems in lattice field theory}, Ringberg, German

    Perturbative calculation of improvement coefficients to O(g^2a) for bilinear quark operators in lattice QCD

    Get PDF
    We calculate the O(g^2 a) mixing coefficients of bilinear quark operators in lattice QCD using a standard perturbative evaluation of on-shell Green's functions. Our results for the plaquette gluon action are in agreement with those previously obtained with the Schr\"odinger functional method. The coefficients are also calculated for a class of improved gluon actions having six-link terms.Comment: 14 pages, REVTe

    Quark confinement and the bosonic string

    Get PDF
    Using a new type of simulation algorithm for the standard SU(3) lattice gauge theory that yields results with unprecedented precision, we confirm the presence of a γ/r\gamma/r correction to the static quark potential at large distances rr, with a coefficient γ\gamma as predicted by the bosonic string theory. In both three and four dimensions, the transition from perturbative to string behaviour is evident from the data and takes place at surprisingly small distances.Comment: TeX source, 21 pages, figures include

    Lattice chirality and the decoupling of mirror fermions

    Full text link
    We show, using exact lattice chirality, that partition functions of lattice gauge theories with vectorlike fermion representations can be split into "light" and "mirror" parts, such that the "light" and "mirror" representations are chiral. The splitting of the full partition function into "light" and "mirror" is well defined only if the two sectors are separately anomaly free. We show that only then is the generating functional, and hence the spectrum, of the mirror theory a smooth function of the gauge field background. This explains how ideas to use additional non-gauge, high-scale mirror-sector dynamics to decouple the mirror fermions without breaking the gauge symmetry--for example, in symmetric phases at strong mirror Yukawa coupling--are forced to respect the anomaly-free condition when combined with the exact lattice chiral symmetry. Our results also explain a paradox posed by a recent numerical study of the mirror-fermion spectrum in a toy would-be-anomalous two-dimensional theory. In passing, we prove some general properties of the partition functions of arbitrary chiral theories on the lattice that should be of interest for further studies in this field.Comment: 29 pages, 2 figures; published version, new addendu

    Towards Weyl fermions on the lattice without artefacts

    Full text link
    In spite of the breakthrough in non-perturbative chiral gauge theories during the last decade, the present formulation has stubborn artefacts. Independently of the fermion representation one is confronted with unwanted CP violation and infinitely many undetermined weight factors. Renormalization group identifies the culprit. We demonstrate the procedure on Weyl fermions in a real representation

    The gradient flow running coupling with twisted boundary conditions

    Get PDF
    We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density E(t)\langle E(t)\rangle is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge SU(2)SU(2) coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.Comment: 27 pages. LaTe

    Linear broadening of the confining string in Yang-Mills theory at low temperature

    Get PDF
    The logarithmic broadening predicted by the systematic low-energy effective field theory for the confining string has recently been verified in numerical simulations of (2+1)-d SU(2) lattice Yang-Mills theory at zero temperature. The same effective theory predicts linear broadening of the string at low non-zero temperature. In this paper, we verify this prediction by comparison with very precise Monte Carlo data. The comparison involves no additional adjustable parameters, because the low-energy constants of the effective theory have already been fixed at zero temperature. It yields very good agreement between the underlying Yang-Mills theory and the effective string theory.Comment: 10 pages, 3 figures. Version published in JHEP; improved figures 1 and

    Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy

    Get PDF
    Amplitude-modulation (tapping mode) atomic force microscopy is a technique for high resolution imaging of a wide variety of surfaces in air and liquid environments. Here by using the virial theorem and energy conservation principles we have derived analytical relationships between the oscillation amplitude, phase shift, and average tip-surface forces. We find that the average value of the interaction force and oscillation and the average power dissipated by the tip-surface interaction are the quantities that control the amplitude reduction. The agreement obtained between analytical and numerical results supports the analytical method.This work has been supported by the Dirección General de Investigación Científica y Técnica (PB98-0471) and the European Union (BICEPS, BIO4-CT-2112). A. S. P. acknowledges financial support from the Comunidad Autónoma de Madrid.Peer reviewe

    Topological Lattice Actions

    Full text link
    We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility \chi_t = \l/V is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.Comment: 38 pages, 12 figure

    A construction of the Glashow-Weinberg-Salam model on the lattice with exact gauge invariance

    Full text link
    We present a gauge-invariant and non-perturbative construction of the Glashow-Weinberg-Salam model on the lattice, based on the lattice Dirac operator satisfying the Ginsparg-Wilson relation. Our construction covers all SU(2) topological sectors with vanishing U(1) magnetic flux and would be usable for a description of the baryon number non-conservation. In infinite volume, it provides a gauge-invariant regularization of the electroweak theory to all orders of perturbation theory. First we formulate the reconstruction theorem which asserts that if there exists a set of local currents satisfying cetain properties, it is possible to reconstruct the fermion measure which depends smoothly on the gauge fields and fulfills the fundamental requirements such as locality, gauge-invariance and lattice symmetries. Then we give a closed formula of the local currents required for the reconstruction theorem.Comment: 32 pages, uses JHEP3.cls, the version to appear in JHE
    corecore