90 research outputs found
Magnetic field topology of the unique chemically peculiar star CU Virginis
The late-B magnetic chemically peculiar star CU Vir is one of the fastest
rotators among the intermediate-mass stars with strong fossil magnetic fields.
It shows a prominent rotational modulation of the spectral energy distribution
and absorption line profiles due to chemical spots and exhibits a unique
strongly beamed variable radio emission. Little is known about the magnetic
field topology of CU Vir. In this study we aim to derive, for the first time,
detailed maps of the magnetic field distribution over the surface of this star.
We use high-resolution spectropolarimetric observations covering the entire
rotational period. These data are interpreted using a multi-line technique of
least-squares deconvolution (LSD) and a new Zeeman Doppler imaging code based
on detailed polarised radiative transfer modelling of the Stokes I and V LSD
profiles. This new magnetic inversion approach relies on the spectrum synthesis
calculations over the full wavelength range covered by observations and does
not assume that the LSD profiles behave as a single spectral line with mean
parameters. We present magnetic and chemical abundance maps derived from the Si
and Fe lines. Mean polarisation profiles of both elements reveal a significant
departure of the magnetic field topology of CU Vir from the commonly assumed
axisymmetric dipolar configuration. The field of CU Vir is dipolar-like, but
clearly non-axisymmetric, showing a large difference of the field strength
between the regions of opposite polarity. The main relative abundance depletion
features in both Si and Fe maps coincide with the weak-field region in the
magnetic map. Detailed information on the distorted dipolar magnetic field
topology of CU Vir provided by our study is essential for understanding
chemical spot formation, radio emission, and rotational period variation of
this star.Comment: 14 pages, 14 figures; accepted for publication in A&
Stellar Winds on the Main-Sequence II: the Evolution of Rotation and Winds
Aims: We study the evolution of stellar rotation and wind properties for
low-mass main-sequence stars. Our aim is to use rotational evolution models to
constrain the mass loss rates in stellar winds and to predict how their
properties evolve with time on the main-sequence.
Methods: We construct a rotational evolution model that is driven by observed
rotational distributions of young stellar clusters. Fitting the free parameters
in our model allows us to predict how wind mass loss rate depends on stellar
mass, radius, and rotation. We couple the results to the wind model developed
in Paper I of this series to predict how wind properties evolve on the
main-sequence.
Results: We estimate that wind mass loss rate scales with stellar parameters
as . We
estimate that at young ages, the solar wind likely had a mass loss rate that is
an order of magnitude higher than that of the current solar wind. This leads to
the wind having a higher density at younger ages; however, the magnitude of
this change depends strongly on how we scale wind temperature. Due to the
spread in rotation rates, young stars show a large range of wind properties at
a given age. This spread in wind properties disappears as the stars age.
Conclusions: There is a large uncertainty in our knowledge of the evolution
of stellar winds on the main-sequence, due both to our lack of knowledge of
stellar winds and the large spread in rotation rates at young ages. Given the
sensitivity of planetary atmospheres to stellar wind and radiation conditions,
these uncertainties can be significant for our understanding of the evolution
of planetary environments.Comment: 26 pages, 14 figures, 2 tables, to be published in A&
Magnetic Doppler imaging of the roAp star HD 24712
We present the first magnetic Doppler images of a rapidly oscillating Ap
(roAp) star.
We deduce information about magnetic field geometry and abundance
distributions of a number of chemical elements on the surface of the hitherto
best studied roAp star, HD 24712, using the magnetic Doppler imaging (MDI)
code, INVERS10, which allows us to reconstruct simultaneously and consistently
the magnetic field geometry and elemental abundance distributions on a stellar
surface. For this purpose we analyse time series spectra obtained in Stokes I
and V parameters with the SOFIN polarimeter at the Nordic Optical Telescope and
recover surface abundance structures of sixteen different chemical elements,
respectively ions, including Mg, Ca, Sc, Ti, Cr, Fe, Co, Ni, Y, La, Ce, Pr, Nd,
Gd, Tb, and Dy. For the rare earth elements (REE) Pr and Nd separate maps were
obtained using lines of the first and the second ionization stage.
We find and confirm a clear dipolar structure of the surface magnetic field
and an unexpected correlation of elemental abundances with respect to this
field: one group of elements accumulates solely where the positive magnetic
pole is visible, whereas the other group avoids this region and is enhanced
where the magnetic equatorial region dominates the visible stellar surface. We
also observe relative shifts of abundance enhancement- or depletion regions
between the various elements exhibiting otherwise similar behaviour.Comment: 13 pages, 9 figures, to be published in Astronomy and Astrophysic
Stellar Winds on the Main-Sequence I: Wind Model
Aims: We develop a method for estimating the properties of stellar winds for
low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a
range of distances from the star.
Methods: We use 1D thermal pressure driven hydrodynamic wind models run using
the Versatile Advection Code. Using in situ measurements of the solar wind, we
produce models for the slow and fast components of the solar wind. We consider
two radically different methods for scaling the base temperature of the wind to
other stars: in Model A, we assume that wind temperatures are fundamentally
linked to coronal temperatures, and in Model B, we assume that the sound speed
at the base of the wind is a fixed fraction of the escape velocity. In Paper II
of this series, we use observationally constrained rotational evolution models
to derive wind mass loss rates.
Results: Our model for the solar wind provides an excellent description of
the real solar wind far from the solar surface, but is unrealistic within the
solar corona. We run a grid of 1200 wind models to derive relations for the
wind properties as a function of stellar mass, radius, and wind temperature.
Using these results, we explore how wind properties depend on stellar mass and
rotation.
Conclusions: Based on our two assumptions about the scaling of the wind
temperature, we argue that there is still significant uncertainty in how these
properties should be determined. Resolution of this uncertainty will probably
require both the application of solar wind physics to other stars and detailed
observational constraints on the properties of stellar winds. In the final
section of this paper, we give step by step instructions for how to apply our
results to calculate the stellar wind conditions far from the stellar surface.Comment: 24 pages, 13 figures, 2 tables, Accepted for publication in A&
Stellar activity and planetary atmosphere evolution in tight binary star systems
Context. In tight binary star systems, tidal interactions can significantly
influence the rotational and orbital evolution of both stars, and therefore
their activity evolution. This can have strong effects on the atmospheric
evolution of planets that are orbiting the two stars.
Aims. In this paper, we aim to study the evolution of stellar rotation and of
X-ray and ultraviolet (XUV) radiation in tight binary systems consisting of two
solar mass stars and use our results to study planetary atmosphere evolution in
the habitable zones of these systems.
Methods. We have applied a rotation model developed for single stars to
binary systems, taking into account the effects of tidal interactions on the
rotational and orbital evolution of both stars. We used empirical
rotation-activity relations to predict XUV evolution tracks for the stars,
which we used to model hydrodynamic escape of hydrogen dominated atmospheres.
Results. When significant, tidal interactions increase the total amount of
XUV energy emitted, and in the most extreme cases by up to factor of 50.
We find that in the systems that we study, habitable zone planets with masses
of 1~M can lose huge hydrogen atmospheres due to the extended high
levels of XUV emission, and the time that is needed to lose these atmospheres
depends on the binary orbital separation.For some orbital separations, and when
the stars are born as rapid rotators, it is also possible for tidal
interactions to protect atmospheres from erosion by quickly spinning down the
stars. For very small orbital separations, the loss of orbital angular momentum
by stellar winds causes the two stars to merge. We suggest that the merging of
the two stars could cause previously frozen planets to become habitable due to
the habitable zone boundaries moving outwards.Comment: Accepted for publication by A&
Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"
We study the interactions between stellar wind and the extended
hydrogen-dominated upper atmospheres of planets and the resulting escape of
planetary pick-up ions from the 5 "super-Earths" in the compact Kepler-11
system and compare the escape rates with the efficiency of the thermal escape
of neutral hydrogen atoms. Assuming the stellar wind of Kepler-11 is similar to
the solar wind, we use a polytropic 1D hydrodynamic wind model to estimate the
wind properties at the planetary orbits. We apply a Direct Simulation Monte
Carlo Model to model the hydrogen coronae and the stellar wind plasma
interaction around Kepler-11b-f within a realistic expected heating efficiency
range of 15-40%. The same model is used to estimate the ion pick-up escape from
the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f.
From the interaction model we study the influence of possible magnetic moments,
calculate the charge exchange and photoionization production rates of planetary
ions and estimate the loss rates of pick-up H+ ions for all five planets. We
compare the results between the five "super-Earths" and in a more general sense
also with the thermal escape rates of the neutral planetary hydrogen atoms. Our
results show that for all Kepler-11b-f exoplanets, a huge neutral hydrogen
corona is formed around the planet. The non-symmetric form of the corona
changes from planet to planet and is defined mostly by radiation pressure and
gravitational effects. Non-thermal escape rates of pick-up ionized hydrogen
atoms for Kepler-11 "super-Earths" vary between approximately 6.4e30 1/s and
4.1e31 1/s depending on the planet's orbital location and assumed heating
efficiency. These values correspond to non-thermal mass loss rates of
approximately 1.07e7 g/s and 6.8e7 g/s respectively, which is a few percent of
the thermal escape rates.Comment: 8 pages, 3 figures, accepted to A&
Modelling the light variability of the Ap star epsilon Ursae Majoris
We simulate the light variability of the Ap star epsUMa using the observed
surface distributions of Fe, Cr, Ca, Mn, Mg, Sr and Ti obtained with the help
of Doppler Imaging technique. Using all photometric data available we specified
light variations of epsUMa modulated by its rotation from far UV to IR. We
employed the LLmodels stellar model atmosphere code to predict the light
variability in different photometric systems. The rotational period of epsUMa
is refined to 5d088631(18). It is shown that the observed light variability can
be explained as a result of the redistribution of radiative flux from the UV
spectral region to the visual caused by the inhomogeneous surface distribution
of chemical elements. Among seven mapped elements, only Fe and Cr significantly
contribute to the amplitude of the observed light variability. In general, we
find a very good agreement between theory and observations. We confirm the
important role of Fe and Cr to the magnitude of the well-known depression
around 5200 \AA\ through the analysis of the peculiar -parameter. Finally,
we show that the abundance spots of considered elements cannot explain the
observed variability in near UV and index which are likely due to some
other causes. The inhomogeneous surface distribution of chemical elements can
explain most of the observed light variability of the A-type CP star epsUMa.Comment: Accepted in A&A, 10 pages, 9 figures, 3 table
- …