23 research outputs found

    A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults

    Get PDF
    BACKGROUND: Sexual dimorphism results in the formation of two types of individuals with specialized reproductive roles and is most evident in the germ cells and gonads. RESULTS: We have undertaken a global analysis of transcription between the sexes using a 31,464 element FlyGEM microarray to determine what fraction of the genome shows sex-biased expression, what tissues express these genes, the predicted functions of these genes, and where these genes map onto the genome. Females and males (both with and without gonads), dissected testis and ovary, females and males with genetically ablated germlines, and sex-transformed flies were sampled. CONCLUSIONS: Using any of a number of criteria, we find extensive sex-biased expression in adults. The majority of cases of sex differential gene expression are attributable to the germ cells. There is also a large class of genes with soma-biased expression. There is little germline-biased expression indicating that nearly all genes with germline expression also show sex-bias. Monte Carlo simulations show that some genes with sex-biased expression are non-randomly distributed in the genome

    Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis

    Get PDF
    Toll receptors in Drosophila melanogaster function in morphogenesis and host defense. Mammalian orthologues of Toll, the Toll-like receptors (TLRs), have been studied extensively for their essential functions in controlling innate and adaptive immune responses. We report that TLR8 is dynamically expressed during mouse brain development and localizes to neurons and axons. Agonist stimulation of TLR8 in cultured cortical neurons causes inhibition of neurite outgrowth and induces apoptosis in a dissociable manner. Our evidence indicates that such TLR8-mediated neuronal responses do not involve the canonical TLR–NF-κB signaling pathway. These findings reveal novel functions for TLR8 in the mammalian nervous system that are distinct from the classical role of TLRs in immunity

    Core Promoter Sequences Contribute to ovo-B Regulation in the Drosophila melanogaster Germline

    No full text
    Utilization of tightly linked ovo-A vs. ovo-B germline promoters results in the expression of OVO-A and OVO-B, C(2)H(2) transcription factors with different N –termini, and different effects on target gene transcription and on female germline development. We show that two sex-determination signals, the X chromosome number within the germ cells and a female soma, differentially regulate ovo-B and ovo-A. We have previously shown that OVO regulates ovarian tumor transcription by binding the transcription start site. We have explored the regulation of the ovo-B promoter using an extensive series of transgenic reporter gene constructs to delimit cis-regulatory sequences as assayed in wild-type and sex-transformed flies and flies with altered ovo dose. Minimum regulated expression of ovo-B requires a short region flanking the transcription start site, suggesting that the ovo-B core promoter bears regulatory information in addition to a “basal” activity. In support of this idea, the core promoter region binds distinct factors in ovary and testis extracts, but not in soma extracts, suggesting that regulatory complexes form at the start site. This idea is further supported by the evolutionarily conserved organization of OVO binding sites at or near the start sites of ovo loci in other flies

    Drosophila OVO zinc-finger protein regulates ovo and ovarian tumor target promoters

    No full text
    The ovo+ and ovarian tumor+ genes function in the germline sex determination pathway in Drosophila, but the hierarchical relationship between them is unknown. We found that increased ovo+ copy number resulted in increased ovarian tumor expression in the female germline and increased ovo expression in the male germline. The ovo locus encodes C2H2 zinc-finger proteins. Bacterially expressed OVO zinc-finger domain bound to multiple sites at or near the ovo and ovarian tumor promoters strongly suggesting that OVO is directly autoregulatory and that ovarian tumor is a direct downstream target of ovo in the germline sex determination hierarchy. Both positive and negative regulation by OVO proteins appears likely, depending on promoter context and on the sex of the fly. Our observation that two strong OVO-binding sites are at the initiator of the TATA-less ovo-B and ovarian tumor promoters raises the possibility that OVO proteins influence the nucleation of transcriptional pre-initiation complexes

    Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature

    No full text
    <div><p>Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 <i>in vivo</i> leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation <i>in vitro</i>. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators.</p></div
    corecore