127 research outputs found
Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment
Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique
in bioinformatics used to infer related residues among biological sequences.
Thus alignment accuracy is crucial to a vast range of analyses, often in ways
difficult to assess in those analyses. To compare the performance of different
aligners and help detect systematic errors in alignments, a number of
benchmarking strategies have been pursued. Here we present an overview of the
main strategies--based on simulation, consistency, protein structure, and
phylogeny--and discuss their different advantages and associated risks. We
outline a set of desirable characteristics for effective benchmarking, and
evaluate each strategy in light of them. We conclude that there is currently no
universally applicable means of benchmarking MSA, and that developers and users
of alignment tools should base their choice of benchmark depending on the
context of application--with a keen awareness of the assumptions underlying
each benchmarking strategy.Comment: Revie
Accurate reconstruction of insertion-deletion histories by statistical phylogenetics
The Multiple Sequence Alignment (MSA) is a computational abstraction that
represents a partial summary either of indel history, or of structural
similarity. Taking the former view (indel history), it is possible to use
formal automata theory to generalize the phylogenetic likelihood framework for
finite substitution models (Dayhoff's probability matrices and Felsenstein's
pruning algorithm) to arbitrary-length sequences. In this paper, we report
results of a simulation-based benchmark of several methods for reconstruction
of indel history. The methods tested include a relatively new algorithm for
statistical marginalization of MSAs that sums over a stochastically-sampled
ensemble of the most probable evolutionary histories. For mammalian
evolutionary parameters on several different trees, the single most likely
history sampled by our algorithm appears less biased than histories
reconstructed by other MSA methods. The algorithm can also be used for
alignment-free inference, where the MSA is explicitly summed out of the
analysis. As an illustration of our method, we discuss reconstruction of the
evolutionary histories of human protein-coding genes.Comment: 28 pages, 15 figures. arXiv admin note: text overlap with
arXiv:1103.434
Evolutionary distances in the twilight zone -- a rational kernel approach
Phylogenetic tree reconstruction is traditionally based on multiple sequence
alignments (MSAs) and heavily depends on the validity of this information
bottleneck. With increasing sequence divergence, the quality of MSAs decays
quickly. Alignment-free methods, on the other hand, are based on abstract
string comparisons and avoid potential alignment problems. However, in general
they are not biologically motivated and ignore our knowledge about the
evolution of sequences. Thus, it is still a major open question how to define
an evolutionary distance metric between divergent sequences that makes use of
indel information and known substitution models without the need for a multiple
alignment. Here we propose a new evolutionary distance metric to close this
gap. It uses finite-state transducers to create a biologically motivated
similarity score which models substitutions and indels, and does not depend on
a multiple sequence alignment. The sequence similarity score is defined in
analogy to pairwise alignments and additionally has the positive semi-definite
property. We describe its derivation and show in simulation studies and
real-world examples that it is more accurate in reconstructing phylogenies than
competing methods. The result is a new and accurate way of determining
evolutionary distances in and beyond the twilight zone of sequence alignments
that is suitable for large datasets.Comment: to appear in PLoS ON
Vitellogenin Underwent Subfunctionalization to Acquire Caste and Behavioral Specific Expression in the Harvester Ant Pogonomyrmex barbatus
PMCID: PMC3744404This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication
How reliably can we predict the reliability of protein structure predictions?
Background:
Comparative methods have been the standard techniques for in silico protein structure prediction. The prediction is based on a multiple alignment that contains both reference sequences with known structures and the sequence whose unknown structure is predicted. Intensive research has been made to improve the quality of multiple alignments, since misaligned parts of the multiple alignment yield misleading predictions. However, sometimes all methods fail to predict the correct alignment, because the evolutionary signal is too weak to find the homologous parts due to the large number of mutations that separate the sequences.
Results:
Stochastic sequence alignment methods define a posterior distribution of possible multiple alignments. They can highlight the most likely alignment, and above that, they can give posterior probabilities for each alignment column. We made a comprehensive study on the HOMSTRAD database of structural alignments, predicting secondary structures in four different ways. We showed that alignment posterior probabilities correlate with the reliability of secondary structure predictions, though the strength of the correlation is different for different protocols. The correspondence between the reliability of secondary structure predictions and alignment posterior probabilities is the closest to the identity function when the secondary structure posterior probabilities are calculated from the posterior distribution of multiple alignments. The largest deviation from the identity function has been obtained in the case of predicting secondary structures from a single optimal pairwise alignment. We also showed that alignment posterior probabilities correlate with the 3D distances between C α amino acids in superimposed tertiary structures.
Conclusion:
Alignment posterior probabilities can be used to a priori detect errors in comparative models on the sequence alignment level. </p
Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment
BACKGROUND: Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. METHODOLOGY/PRINCIPAL FINDINGS: We introduce Phylo, a human-based computing framework applying "crowd sourcing" techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. CONCLUSIONS/SIGNIFICANCE: We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of "human-brain peta-flops" of computation that are spent every day playing games. Phylo is available at: http://phylo.cs.mcgill.ca
Predicting Bevirimat resistance of HIV-1 from genotype
<p>Abstract</p> <p>Background</p> <p>Maturation inhibitors are a new class of antiretroviral drugs. Bevirimat (BVM) was the first substance in this class of inhibitors entering clinical trials. While the inhibitory function of BVM is well established, the molecular mechanisms of action and resistance are not well understood. It is known that mutations in the regions CS p24/p2 and p2 can cause phenotypic resistance to BVM. We have investigated a set of p24/p2 sequences of HIV-1 of known phenotypic resistance to BVM to test whether BVM resistance can be predicted from sequence, and to identify possible molecular mechanisms of BVM resistance in HIV-1.</p> <p>Results</p> <p>We used artificial neural networks and random forests with different descriptors for the prediction of BVM resistance. Random forests with hydrophobicity as descriptor performed best and classified the sequences with an area under the Receiver Operating Characteristics (ROC) curve of 0.93 ± 0.001. For the collected data we find that p2 sequence positions 369 to 376 have the highest impact on resistance, with positions 370 and 372 being particularly important. These findings are in partial agreement with other recent studies. Apart from the complex machine learning models we derived a number of simple rules that predict BVM resistance from sequence with surprising accuracy. According to computational predictions based on the data set used, cleavage sites are usually not shifted by resistance mutations. However, we found that resistance mutations could shorten and weaken the <it>α</it>-helix in p2, which hints at a possible resistance mechanism.</p> <p>Conclusions</p> <p>We found that BVM resistance of HIV-1 can be predicted well from the sequence of the p2 peptide, which may prove useful for personalized therapy if maturation inhibitors reach clinical practice. Results of secondary structure analysis are compatible with a possible route to BVM resistance in which mutations weaken a six-helix bundle discovered in recent experiments, and thus ease Gag cleavage by the retroviral protease.</p
MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons
Until now the most efficient solution to align nucleotide sequences containing open reading frames was to use indirect procedures that align amino acid translation before reporting the inferred gap positions at the codon level. There are two important pitfalls with this approach. Firstly, any premature stop codon impedes using such a strategy. Secondly, each sequence is translated with the same reading frame from beginning to end, so that the presence of a single additional nucleotide leads to both aberrant translation and alignment
Tidying Up International Nucleotide Sequence Databases: Ecological, Geographical and Sequence Quality Annotation of ITS Sequences of Mycorrhizal Fungi
Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi
- …