125 research outputs found

    Time–temperature–transformation diagram and microstructures of bulk glass forming Pd40Cu30Ni10P20

    Get PDF
    Isothermal crystallization studies were performed on the bulk glass forming alloy Pd40Cu30Ni10P20 in the undercooled liquid region between the glass transition and liquidus temperature, resulting in a complete time–temperature–transformation (TTT) diagram for crystallization. The TTT diagram shows a typical "C" shape with the nose at 50 s and 680 K. Assuming steady state nucleation and a diffusion-controlled growth rate, the TTT diagram was successfully fit over the entire range of the measurement. The microstructure after isothermal crystallization shows a modulation in Cu and P for all degrees of undercooling. The primary solidified phase is Cu3Pd, which forms distinct dendrites at low undercooling. From additional constant cooling experiments, the critical cooling rate to bypass crystallization was determined to be 0.33 K/s

    Stick-slip dynamics and recent insights into shear banding in metallic glasses

    Get PDF
    Despite extensive research, the understanding of the fundamental processes governing yielding and plastic flow in metallic glasses remains poor. This is due to experimental difficulties in capturing plastic flow as a result of a strong localization in space and time by the formation of shear bands at low homologous temperatures. Unveiling the mechanism of shear banding is hence key to developing a deeper understanding of plastic deformation in metallic glasses. We will compile recent progress in studying the dynamics of shear-band propagation from serrated flow curves. We will also take a perspective gleaned from stick-slip theory and show how the insights gained can be deployed to explain fundamental questions concerning the origin, mechanism, and characteristics of flow localization in metallic glasse

    Grain-size dependence of intergranular magnetic correlations in nanostructured metals

    Get PDF
    Magnetic small-angle neutron scattering experiments were performed on nanostructured Fe, Co and Ni samples of varying grain size, produced by inert-gas condensation. The experiments show that the spontaneous spatial magnetic correlations forming in zero-field extend over many individual grains. These correlations depend strongly on grain size. In Fe, they have a minimum at a grain size of around 35 nm and increase sharply for smaller grain sizes. The crossover occurs at grain sizes comparable with L_(crit) = πδ, where δ is the bulk domain-wall width. For grain sizes below L_(crit), the results are explained on the basis of the random-anisotropy model, which takes into account that the magnetic alignment between the grains competes with the anisotropies of the individual grains. Above L_(crit), where domain walls can form within one grain, the magnetization direction corresponds to the anisotropy direction varying from grain to grain, and the magnetic correlation length increases approximately linearly with grain size. Furthermore, the measurements on Fe, Co and Ni show that the spatial magnetic correlations measured by SANS are always larger than L_(crit). This is in agreement with results of theoretical studies showing that nonuniform magnetization configurations can only exist in grains with sizes D > L_(crit)

    Metastable quasicrystal-induced nucleation in a bulk glass-forming liquid

    Full text link
    This study presents a unique Mg-based alloy composition in the Mg-Zn-Yb system which exhibits bulk metallic glass, metastable icosahedral quasicrystals (iQCs), and crystalline approximant phases in the as-cast condition. Microscopy revealed a smooth gradual transition from glass to QC. We also report the complete melting of a metastable eutectic phase mixture (including a QC phase), generated via suppression of the metastable-to-stable phase transition at high heating rates using fast differential scanning calorimetry (FDSC). The melting temperature and enthalpy of fusion of this phase mixture could be measured directly, which unambiguously proves its metastability in any temperature range. The kinetic pathway from liquid state to stable solid state (an approximant phase) minimizes the free-energy barrier for nucleation through an intermediate state (metastable QC phase) because of its low solid- liquid interfacial energy. At high undercooling of the liquid, where diffusion is limited, another approximant phase with near-liquid composition forms just above the glass-transition temperature. These experimental results shed light on the competition between metastable and stable crystals, and on glass formation via system frustration associated with the presence of several free-energy minima

    Concentration and temperature dependence of decomposition in supercooled liquid alloys

    Get PDF
    Small-angle neutron scattering experiments were performed on the bulk amorphous alloy Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) (Vit1®, subscripts indicate at.%) and on other alloys, where the (Zr,Ti) and (Cu,Be) contents were varied by following the line in composition space connecting Vit1 and Zr_(46.8)Ti_(8.2)Cu_(7.5)Ni_(10)Be_(27.5) (Vit4®). The small-angle neutron scattering data of the samples, annealed at temperatures between 603 K and 663 K, show interference peaks, giving evidence for spatially correlated arrangements of inhomogeneities. The Q values of the interference peaks, Q_(max), decrease with increasing annealing temperature Ta and, at a given annealing temperature, with composition following the connecting line from Vit1 to Vit4. Down to the glass transition temperature T_g, the data follow a relation 1/L^2 ∝ (T_s – T_a) as predicted by the linearized Cahn theory, with L = 2π /Q_(max) the characteristic wavelength of the decomposition and T_s the apparent spinodal temperature. Below T_g, a different behavior is observed, which may be either due to a change in atomic diffusion or due to an insufficient relaxation of the samples

    Thermodynamic Assessment of the Sn-Ti System

    Get PDF
    Summary.: The knowledge of phase equilibria and thermodynamic properties in the ternary Cu-Sn-Ti system is of technical importance for active brazing filler metals. Thermodynamic descriptions of the binary systems Cu-Ti and Cu-Sn are well established. In this work a self-consistent thermodynamic description of the Sn-Ti binary system has been obtained by fitting critically reviewed thermochemical and phase diagram data. The newest and most consistent lattice stability has been used, and all the intermetallic phases and recent experimental information have been taken into account. The equilibrium measurement on the Sn-rich side and more experimental thermodynamic properties are required for a better thermodynamic description of this system. The evaluated thermodynamic description of the Sn-Ti binary system will serve as part of the thermodynamic database for Cu-Sn-Ti brazing alloy

    Grain-size dependence of intergranular magnetic correlations in nanostructured metals

    Get PDF
    Magnetic small-angle neutron scattering experiments were performed on nanostructured Fe, Co and Ni samples of varying grain size, produced by inert-gas condensation. The experiments show that the spontaneous spatial magnetic correlations forming in zero-field extend over many individual grains. These correlations depend strongly on grain size. In Fe, they have a minimum at a grain size of around 35 nm and increase sharply for smaller grain sizes. The crossover occurs at grain sizes comparable with L_(crit) = πδ, where δ is the bulk domain-wall width. For grain sizes below L_(crit), the results are explained on the basis of the random-anisotropy model, which takes into account that the magnetic alignment between the grains competes with the anisotropies of the individual grains. Above L_(crit), where domain walls can form within one grain, the magnetization direction corresponds to the anisotropy direction varying from grain to grain, and the magnetic correlation length increases approximately linearly with grain size. Furthermore, the measurements on Fe, Co and Ni show that the spatial magnetic correlations measured by SANS are always larger than L_(crit). This is in agreement with results of theoretical studies showing that nonuniform magnetization configurations can only exist in grains with sizes D > L_(crit)

    Cation diffusion patterns across the magneto-structural transition in Fe7S8

    Get PDF
    Migration of atoms in solids during diffusion-dependent reactions is relatively fast and generally not directly recordable in experiments. Here we present an experimental framework that includes fast differential scanning calorimetry to resolve cation-migration paths in crystalline solids using the reversible magneto-structural transition of 4C to 1C pyrrhotite as a testbed. The transition between these two polymorphic Fe7S8 phases at about 600 K is a diffusive process of vacancies, respectively of Fe in octahedral interstitial sites within a hexagonal close-packed lattice of sulfur, and it coincides with the Curie temperature of 4C pyrrhotite. The Fe cations migrate along three kinds of diffusion paths, and their enthalpy contributions to the total reaction enthalpy are taken to define the diffusion patterns in the endothermic reaction and the exothermic back-reaction, respectively. Our experimental findings provide insight into the potential of diffusion patterns to disentangle ordering mechanisms in solids.ISSN:1463-9084ISSN:1463-907

    Concentration and temperature dependence of decomposition in supercooled liquid alloys

    Get PDF
    Small-angle neutron scattering experiments were performed on the bulk amorphous alloy Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) (Vit1®, subscripts indicate at.%) and on other alloys, where the (Zr,Ti) and (Cu,Be) contents were varied by following the line in composition space connecting Vit1 and Zr_(46.8)Ti_(8.2)Cu_(7.5)Ni_(10)Be_(27.5) (Vit4®). The small-angle neutron scattering data of the samples, annealed at temperatures between 603 K and 663 K, show interference peaks, giving evidence for spatially correlated arrangements of inhomogeneities. The Q values of the interference peaks, Q_(max), decrease with increasing annealing temperature Ta and, at a given annealing temperature, with composition following the connecting line from Vit1 to Vit4. Down to the glass transition temperature T_g, the data follow a relation 1/L^2 ∝ (T_s – T_a) as predicted by the linearized Cahn theory, with L = 2π /Q_(max) the characteristic wavelength of the decomposition and T_s the apparent spinodal temperature. Below T_g, a different behavior is observed, which may be either due to a change in atomic diffusion or due to an insufficient relaxation of the samples

    Magnetoelastic coupling in triangular lattice antiferromagnet CuCrS2

    Full text link
    CuCrS2 is a triangular lattice Heisenberg antiferromagnet with a rhombohedral crystal structure. We report on neutron and synchrotron powder diffraction results which reveal a monoclinic lattice distortion at the magnetic transition and verify a magnetoelastic coupling. CuCrS2 is therefore an interesting material to study the influence of magnetism on the relief of geometrical frustration.Comment: 6 pages, 6 figures, 1 tabl
    corecore