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Despite extensive research, the understanding of the fundamental processes governing yielding
and plastic flow in metallic glasses remains poor. This is due to experimental difficulties in
capturing plastic flow as a result of a strong localization in space and time by the formation of shear
bands at low homologous temperatures. Unveiling the mechanism of shear banding is hence key to
developing a deeper understanding of plastic deformation in metallic glasses. We will compile
recent progress in studying the dynamics of shear-band propagation from serrated flow curves.
We will also take a perspective gleaned from stick-slip theory and show how the insights gained
can be deployed to explain fundamental questions concerning the origin, mechanism, and
characteristics of flow localization in metallic glasses.

I. INTRODUCTION

Since their discovery by Duwez and coworkers in
1960,1 metallic glasses have attracted considerable re-
search interest on both a fundamental scientific and an
engineering level. Because of their unique materials
properties2 and spurred along by the significant progress
in alloy development over the last few decades,3 metallic
glasses have proved to be promising materials for both
functional and structural applications,4 especially in bulk
form. Owing to a complex, disordered atomic structure,
however, the fundamental processes and mechanisms
governing their properties remain in many cases
poorly understood. This applies particularly to the field
of mechanical properties, which has received broad
attention in recent years.5–7 While some early attempts at
clarification focused on transferring concepts of disloca-
tion theory developed for crystalline metals to disordered
media,8 it is now commonly understood that the nature and
atomic-scale mechanisms of plastic flow in amorphous
metals must be fundamentally different to their crystalline
counterparts. Following from early work conducted by
Argon9 as well as Spaepen et al.,10,11 a concept that has
now gained increasing popularity is that of plasticity
governed by shear-induced, local structural rearrange-
ments of atomic clusters, so-called shear transformation
zones (STZs).12 However, establishing experimental evi-
dence for the validity of this atomic-scale flow model
remains difficult, whereas, for example, at a much larger
scale, analogous behavior of particle rearrangements can
be captured in colloidal glasses.13 For metallic glasses,

additional experimental difficulties reside in a strong
localization of plastic flow in both time and space,
typically observed at low homologous temperatures at
which shear banding prevails.11 Understanding the pro-
cess of flow localization is hence crucial to unveiling the
fundamental plastic flow mechanisms in metallic glasses.
Flow localization in shear bands is most generally

found to be present in materials that show a nonmono-
tonic stress versus strain-rate relationship, allowing
regions of different plastic strain rate to coexist at
a common stress.14 In many systems, this is also accom-
panied or even induced by time- and strain-dependent
processes, which may include softening resulting from
structural disordering as a function of strain or thermal
effects. This leads to a complex rheological net response
where cause and consequence of localization is often not
discernable.15 Shear bands may in fact be formed in a wide
range of materials, and they have been studied most
extensively in complex fluids.15,16 In the latter, the time
and length scales involved permit detailed in-situ moni-
toring of the evolution of inhomogeneous velocity profiles
during shear using a wide range of experimental techni-
ques.17 Consequently, the physical origin and mechanism
of flow localization in complex fluids are much better
understood. By contrast, capturing shear bands in-situ in
metallic glasses during conventional mechanical testing
has proved to be very difficult because of their low
thickness (�20 nm18) and apparent short life-time
(,2–3 ms19). Most experimental attempts have involved
various high-speed imaging techniques, which gener-
ally suffered from insufficient time and spatial resolu-
tion.19–21 Because of these experimental restraints,
fundamental questions as to the mechanism of shear banding
in metallic glasses remain open and vividly debated.
These include:

a)Address all correspondence to this author.
david.klaumuenzer@mat.ethz.ch

This paper has been selected as an Invited Feature Paper.
DOI: 10.1557/jmr.2011.178

J. Mater. Res., Vol. 26, No. 12, Jun 28, 2011 �Materials Research Society 2011 1453
https:/www.cambridge.org/core/terms. https://doi.org/10.1557/jmr.2011.178
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:22:57, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1557/jmr.2011.178
https:/www.cambridge.org/core


(i) How does a shear band nucleate and propagate
across a sample and how do atomic-scale clusters trans-
form at a microscopic level to yield permanent shear
deformation at a macroscopic scale?5,22

(ii) What are the time scales involved in shear-band
operation and how can local strain rates be estimated?19,23

(iii) Does significant adiabatic heating accompany
shear banding, leading to autocatalytic softening within
the band itself?24

In this article, we will compile and extend recent prog-
ress made in addressing the above questions. We will
show an alternative approach to direct imaging and
describe how time-resolved characterization of serrated
flow can be used to quantify the dynamics of shear-band
propagation in metallic glasses. Focusing on temperature
dependence, the insights thus gained can be used to
establish a better understanding of shear banding and
plastic deformation in metallic glasses.

We shall begin by briefly reviewing the fundamentals
of serrated plastic flow in metallic glasses, drawing a
phenomenological analogy to stick-slip processes, such as
solid-state friction. We will proceed by detailing how the
dynamics of individual slip instabilities can be captured
experimentally and quantified with the aid of different
models of shear-band propagation. The results thus ob-
tained will be presented and discussed with respect to their
implications for the fundamental mechanisms of strain
localization and plastic flow in metallic glasses.

II. SERRATED FLOW AND STICK-SLIP
ANALOGIES

Despite the fact that similar deformation behavior can
be observed under various loading geometries such as

bending, tearing, or nanoindentation,25–30 we will limit
the following discussion to uniaxial compression testing
of bulk samples as shown schematically in Fig. 1(a). A
sample is positioned between two compression platens
and a constant crosshead velocity vappl is applied, and load
F(t) and, with the aid of strain gauges, sample length l(t)
are continuously monitored. As first observed by Kimura
andMasumoto,31 once the yield stress is exceeded, typical
load drops (serrations) coinciding with discrete displace-
ment bursts can be detected. This is depicted in Fig. 1(b)
for a Zr-based bulk metallic glass tested at room temper-
ature and a strain rate of 10�3 s�1. The flow serrations are
due to intermittency in shear-band propagation, that is, the
crosshead velocity vappl used in the test is not fully
transferred to the deforming band, which rather undergoes
alternating cycles of negligible (v � vappl) and rapid
deformation rates (v� vappl). As subtly indicated in recent
work,32–35 this behavior is a typical characteristic of
a system undergoing stick-slip motion. It is remarked that
for stick (v� vappl) it should not necessarily be concluded
that the band is fully at rest (v5 0), since some slow creep
motion may still be expected. For serrated flow in metallic
glasses, this slow motion is likely to be below the test
resolution as the reloading segments appear to reflect
a fully elastic response of the system.

The principles of stick-slip are best understood by
considering the well-studied example of solid-state fric-
tion (e.g., see Ref. 36), typically monitored using a block-
slider setup [see Fig. 2(a)]. In such a system, a block is
positioned on a solid substrate with an optional normal
load FN applied. The block is laterally connected to a drive
system by an extension spring. During a test, a constant
drive velocity vappl is applied and the position x(t) of the
block and the extension of the spring l(t) (proportional to

FIG. 1. (a) Typical compression setup: A sample is inserted between two compression platens and a constant crosshead velocity vappl is applied. Sample
length l(t) and load F(t) are continuously monitored during the test. (b) Time-resolved load and displacement data showing discrete load serrations and
displacement bursts. The test was conducted on Zr52.5Ti5Cu17.9Ni14.6Al10 (Vit105) at room temperature and a strain rate of 10�3 s�1.
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the load F applied) are recorded as a function of time t.
The dynamics of the block may then be described by
two distinct states: During stick, the block remains
(approximately) stationary, while the spring extends at
a constant rate set by vappl. Hence, the force applied to the
system and the elastic energy stored within the spring
increase over time. At a critical limit, the block begins to
slide rapidly, while part of the stored elastic energy is
consumed to propel its motion. This corresponds to the
slip-stage. The spring partly relaxes elastically until the
block arrests at some lower limit in force and a new period
of stick is initiated. Thus, the process repeats iteratively.

It is interesting to note that typical curves of spring
extension (equivalent to the load applied) and block
position, as displayed schematically in Fig. 2(b), show
the same characteristic features (i.e., serrations and dis-
crete jumps) as the load and displacement plots for the
metallic glass [see Fig. 1(b) for comparison]. This is
because analogous to the extension spring in the block-
slider system, the compliant load frame of the compression
machine in combination with the major fraction of the
sample volume acts as a mediating component between
the drive system and the deforming body, thus leading to
intermittency by storing elastic energy during stick and
releasing energy to the shear band to drive its propagation
during rapid slip. Hence, a single serration in Fig. 1(b) can
be taken to represent a full cycle of shear-band operation.
This includes shear-band initiation at peak stress, its
propagation at high velocity under decreasing load, and
shear-band arrest at a lower limit in stress. Additional

evidence for intermittency in shear-band propagation is
found by inspecting the surfaces exposed during shear
using electron microscopy. An example is given in Fig. 3.
Characteristic striations, similar to those formed during
incremental fatigue-crack propagation, are observed.
Their spacing roughly corresponds to the distance by
which the band propagates during each shear event.21,37

Having identified stress drops to correspond to the
stage of shear-band propagation, we are now interested in
addressing the question of how fast these slip instabilities
actually are. This can be done by performing time-
resolved measurements of load serrations and strain
bursts. In the next section, we shall outline the technical
requirements for performing these experiments.

Before proceeding to the next part, however, it shall be
pointed out that serrated flow during mechanical testing,
independent of the testing geometry chosen, does not
appear to be a universal characteristic of metallic glasses.
Most metallic glasses actually fail catastrophically at their
yield stress, even under uniaxial compressive conditions.
Explaining the origin of “stable shear banding” is directly
linked to understanding why some metallic glasses
achieve some apparent ductility. Despite the extensive
work done in this field, no convincing theory has been
established yet. A wide range of possible influences and
causes have been proposed and the reader is referred to
Ref. 6 for a detailed review of this topic and to Ref. 38
for a more recent study investigating the possible effect
of sample size and machine stiffness on shear-band
stability.

FIG. 2. (a) Schematic block-slider setup used to characterize solid-state friction (adapted from Ref. 36). A solid block resting on a substrate is
connected to a drive system via an extension spring. A constant velocity vappl is used, and block position x(t) and spring extension l(t) (proportional to
the load F applied) are monitored during the test as a function of time t. (b) Typical curves of spring extension l(t) and block position x(t) as a function
of time t. Stick cycles in which the block is at rest precede cycles of rapid slip in which the spring relaxes.
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III. TIME-RESOLVED COMPRESSION TESTING:
EXPERIMENTAL CONSIDERATIONS

Preliminary work aimed at estimating the time scales
of shear-band propagation by time-resolved compression
testing was performed by Wright et al.39 using strain
gauges directly attached to the sample. This study was
later refined in Ref. 22. Following from this work, other
researchers adopted similar techniques.40–43

In performing time-resolved compression tests, care
must be taken to achieve a sufficiently high resolution in
the load and displacement signals recorded. This is pri-
marily done by using high acquisition rates (.10 kHz) in
combination with eliminating any filtering procedure,
which could otherwise distort the signal. Additionally,
using a piezoelectric load cell is vital to accurately detect
dynamic changes in load. As stressed by Wright et al.22

and confirmed in Ref. 33, these means are essential to
record load and displacement correctly at submillisecond
resolution. Following the above procedures allows
for determining the duration Dt of stress drops and

displacement bursts as well as their respective magnitudes
Dr and Du*. These parameters are schematically repre-
sented in Fig. 4 along with the linear fitting procedure
applied.

It is important to remark that the displacement gener-
ated during shear-band propagation is controlled by an
elastic recovery of the load-frame-sample assembly, as
described in the previous section. A relationship between
the load-drop magnitude DF (5 ADr, with A being the
cross-sectional area) and the total displacement generated,
Du, can be shown to take the form

Du5jDF ; ð1Þ
where j corresponds to the system’s compliance. Model-
ing the load-frame-sample assembly by two springs in
series44 yields

j5Cm þ Cs ; ð2Þ
where Cm and Cs are the compliances of machine and
sample, respectively. With an additional simplifying as-
sumption that the shear-band velocity v .. vappl, Eq. (1)
follows from an integration of the so-called machine
equation used to characterize stick-slip systems (e.g., see
Ref. 36):

_F5
1
j
ðvappl � vÞ : ð3Þ

As pointed out in Ref. 45, due to the nature of a typical
compression setup, only the displacement recovered by
the load-frame CmDF is measured using strain gauges to
monitor sample length. In Fig. 5, this is confirmed by
plotting the measured values Du* against DF (blue circles)
with the slope reproducing the load-frame compliance Cm.

FIG. 3. Scanning electron microscopy image illustrating characteristic
striations found on the glide surface exposed during shear. The spacing
roughly corresponds to the glide distance during each cycle, demon-
strating the intermittent nature of shear-band propagation.

FIG. 4. Schematic showing the linear fitting procedure applied to time-
resolved stress drops (upper curve) and displacement bursts (lower
curve) to extract the respective magnitudes Dr and Du*, as well as their
duration Dt.

FIG. 5. Blue circles: Experimentally determined values of displace-
ment burst magnitude Du* versus load-drop magnitude DF, showing
a linear trend with the slope reproducing the load-frame compliance
Cm (blue fit). Red triangles: Corrected values of total displacement burst
magnitude Du taking into account the compliance of the entire system
j 5 (Cm + Cs), with Cs being the compliance of a 5-mm-diameter
sample. The compliance of the entire system, j, corresponds to the slope
of the red line.
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Hence, it is essential to correct the measured values of
displacement burst to account for the sample contribution
CsDF as indicated by the red line and triangles in Fig. 5.

Equation (1) demonstrates that the magnitude of dis-
placement bursts is not a property of the metallic glass, but
rather depends on both sample dimensions and machine
characteristics, as also confirmed for small length scales in
Ref. 46. It is noted that this dimensional scaling is inherent
to all stick-slip systems, as understood by inspecting the
machine equation.

In characterizing the dynamics of discrete shear events
in metallic glasses using the above methodology, it is
important to bear in mind that shear-band propagation is
driven by the recovery of excess elastic energy stored in
the load-frame-sample assembly. An upper limit in shear-
band velocity may therefore be thought to correspond to
the maximum rate at which this elastic energy can be re-
leased, being approximately equal to the velocity of sound
in the respective materials (of the order of 103 m/s). This
argument will become important when assessing the
resolution of the setup.

We will now proceed by discussing different models of
shear-band propagation used to relate Du and Dt to
determine values of shear-band velocity.

IV. MODEL PICTURE OF SHEAR-BAND
PROPAGATION

Because of the experimental difficulties of capturing
shear banding in-situ, no common agreement has been
reached regarding the actual mechanism of shear-band
propagation. Two different models have been proposed in
the literature. Following the notation by Wright et al.,22

these models refer to the two limiting cases in which
(i) shear occurs simultaneously across the entire shear
plane, termed shear displacement jump (SDJ) mechanism,
or (ii) shear strain is localized within a small volume of
material propagating progressively across the shear plane
from one end of the sample to the adjacent free surface.
The latter scenario is analogous to crack propagation in
materials and bears some resemblance to dislocation

motion in solids.23 It is referred to as the shear front
propagation (SFP) mechanism. Figure 6 shows schematic
drawings that illustrate the two different scenarios.

The SDJ-velocity is calculated by dividing the magni-
tude of the shear offset Dw formed at the surface by the
duration of the shear event Dt. Hence, for a shear band
inclined at 45° relative to the main stress axis,

vSDJ 5
Dw
Dt

5
ffiffiffi
2

p Du
Dt

; ð4Þ

where Du is the total uniaxial displacement, that is, cor-
rected to include the sample contribution [see Eq. (1)]. The
SDJ-velocity essentially represents a local shear rate
within the deforming band.

By contrast, the SFP-velocity denotes the rate of the
moving shear front. Dt is therefore assumed to be the time
taken by the front to cross the entire shear plane of lengthffiffiffi
2

p
d, with d being the sample diameter. The SFP-velocity

is hence given by

vSFP5
ffiffiffi
2

p d

Dt
: ð5Þ

It is important to note that different experimental
evidence has been claimed to verify both models. Support
for the SFP-model typically stems from ex-situ observa-
tions of diffuse shear bands that do not extend fully
across, but terminate within the sample.20,23,47 These
shear bands typically form either at macroscopic stresses
marginally below the yield plateau in an apparent hard-
ening regime, as revealed by interrupted tests during
uniaxial compression,48 or, more prominently, on bend-
ing.49 It is believed that the origin of these diffuse shear
bands is in fact an inhomogeneous stress state, such that
the criterion for yield is only fulfilled locally within the
sample, that is, not bridging the entire shear plane. In this
respect, diffuse shear bands simply reflect the high
sensitivity of localized flow toward stress.

In an elegant experiment, Song et al.50 very recently
combined high-speed imaging with time-resolved strain
measurements during uniaxial compression testing. From
the video recordings, the growth rates of the offsets on either
side of the sample could be monitored for a single shear
band. They found both rates to be equal, yielding direct
support for the SDJ-model. It is therefore believed that in
uniaxial compression testing under homogeneous stress
states, shear-band propagation occurs by simultaneous glide
along the shear plane. In this respect, under ideal conditions,
a load drop simply corresponds to the stage at which uniform
plastic flow occurs within a fully developed band. Despite its
popular use, the term “shear-band propagation” might
therefore be argued to be slightly misleading since the band
itself is expected to remain stationary. Although not
applicable to the propagation stage, it may, however, be
envisioned that the initiation of a shear band follows

FIG. 6. Schematic illustration of different mechanisms of shear-band
propagation; (a) shear displacement jump scenario and (b) shear front
propagation mechanism.
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a SFP-like mechanism. However, this must occur at time
scales and with associated displacements that cannot be
resolved by the current experimental technique.

In conclusion, it appears that the SDJ-scenario is most
applicable to the case of uniaxial compression under
homogeneous stress states, with the SDJ-velocity essen-
tially providing a measure of the shear rate within a shear
band, which is believed to be uniform along the band’s
length. It must be recalled that sinceDw scales with sample
dimensions andmachine stiffness, as follows from Eqs. (1)
and (2), the SDJ-velocity as defined in Eq. (4) does not
represent an intrinsic glass property. It is also remarked
that under more complex stress states such as bending, the
mechanism of shear-band operation might differ from a
pure SDJ-scenario.47

In Sec. V, we will focus on typical values of SDJ-
velocity, experimentally determined at ambient conditions
for a Zr52.5Ti5Cu17.9Ni14.6Al10 glass (Vit105).

V. SHEAR-BAND VELOCITIES AT AMBIENT
CONDITIONS

Figure 7 shows a time-resolved stress drop and the
corresponding uniaxial displacement burst for a 3-mm-
diameter sample of Vit105 tested at room temperature. The
values for shear-event duration Dt and magnitude Du* can
be determined to be equal to 5 ms and 2 lm, respectively.
Calculating the corrected displacement burst magnitude
(�4 lm) yields a SDJ-velocity of 1.1 mm/s according to
Eq. (4). This value is in good agreement with results
obtained in Ref. 22. In Sec. III, we argued that the system
can recover elastic strain at a maximum theoretical
velocity of the order of 103 m/s, corresponding to the
speed of sound in solids. It is noted that the actual value of
shear-band velocity detected is smaller by a factor of 106

compared with this theoretical limit. This implies that it is
in fact the dynamics of plastic flow in the shear band,
which controls the relaxation rates within the system

during slip instabilities. A shear band can thus be regarded
as being unconstrained with respect to strain rate, validat-
ing the experimental approach chosen.43

Figure 8 represents a plot of displacement burst duration
versus stress drop duration, matching identical shear
events. It can be seen that the values scatter around a line
of slope unity (solid line added for clarity), essentially
confirming that stress drop and strain burst are mutually
interlinked and occur at the same time scales. This
contrasts arguments raised in Ref. 51, in which shear step
formation was proposed to be significantly faster than
stress drops. A match in durations is in fact to be expected
according to the machine equation for stick-slip systems
[see Eq. (3)], essentially relating the load relaxation rate to
the slip velocity. This emphasizes the significance of
viewing serrated flow in metallic glasses as a typical
stick-slip process.

In deriving an equation for the SDJ-velocity [Eq. (4)],
shear was assumed to occur within a single shear band
only. It is noted that strain gauges only provide measure-
ments of global changes in displacement that are averaged
over the entire sample length. No information can there-
fore be deduced directly from the signal regarding the
number of shear bands operating during a single shear
event. However, from an ex-situ imaging study by scan-
ning electron microscopy, the total displacement gener-
ated in a single serration could be correlated to the change
in shear offset of a single shear band after correcting for the
angle of shear band propagation and machine compli-
ance.45 This result hence confirms that each serration
corresponds to the operation of a single shear band,
validating Eq. (4).

Having established the room-temperature dynamics of
shear bands, we will now focus on results obtained on
lowering the testing temperature. We will show that by
measuring the temperature-dependence of the shear-band
velocity, a thermal contribution to the activation of plastic
flow in metallic glasses can be discerned.

FIG. 7. Resolved stress drop and displacement burst for Vit105 tested
at room temperature and a strain rate of 10�3 s�1 (d 5 3 mm).

FIG. 8. Correlation of displacement burst duration versus stress drop
duration indicating a line of slope unity. The scatter is due to noise in the
displacement signal.
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VI. TEMPERATURE-DEPENDENCE OF
SHEAR-BAND PROPAGATION

One of the most intriguing aspects of shear-band
dynamics is a marked slowing down in velocity as temp-
erature is reduced.43 A qualitative representation of this
effect is provided in Fig. 9, showing selected stress drops of
comparable magnitude for different temperatures. It is easily
apparent that the duration of shear events increases markedly
with decreasing temperature. In fact, shear-event durations
as long as a few seconds have been captured for Vit105 at
�100 °C,45 while stress drop magnitude and strain burst size
remain approximately independent of temperature.43 Calcu-
lating the SDJ-velocities for a larger set of serrations
allows for constructing an Arrhenius plot as given in Fig.
10. Linear behavior is observed with the shear-band velocity
covering four orders of magnitude within a temperature
range of 50 °C down to �90 °C.

By fitting the data in Fig. 10, an activation energy of
0.326 0.0006 eV can be extracted for Vit105. In viewing

shear-band propagation as a scenario of uniform plastic
deformation along a shear band (SDJ-model in Sec. V), we
can directly associate this energy term with the thermal
activation of plastic flow. Assuming the fundamental flow
units to be represented by STZs, we may propose their
operation to be the rate-limiting step in governing the
dynamics of shear-band propagation at a macroscopic
scale. Hence, the SDJ-velocity can directly be related to
the global plastic strain rate _c within a shear band. The
strain rate _c is given by a product of the density of
available sites q (number of sites per unit volume) times
a unit quantity of strain c0 associated with each zone
multiplied by the rate at which they transform, k. The latter
depends on the thermal part of the activation energy
barrier, DG, associated with each transformation in the
limits of high stress s (see Fig. 11 for details). Assuming
the shear-band velocity to be proportional to the global
strain rate, we may write

vSDJ } _c5qc0k5qc0v0exp
�DG
kBT

� �
; ð6Þ

where v0 represents a characteristic frequency, kB is the
Boltzmann constant, and T is the absolute temperature.

It is interesting to note that validation of the experimen-
tally derived activation energy DG is found in recent
simulation studies. Mayr52 as well as Rodney and Schuh53

determined activation barriers for atomic-scale inelastic flow
events in model Cu–Ti and Cu–Zr glassy systems at high
stresses and low temperatures. Both studies found activated
states to bemost favorable for energies of around 0.3–0.4 eV.

It must be remarked that when directly applied to
experimental data, Eq. (6) represents a very simplistic
view of relating the shear-band velocity on a macroscopic
level to the rate of STZ-activity at a microscopic scale. As
such, strain- or time-dependent processes, such as shear-
induced softening or structural relaxation, have not been
taken into account. These are expected to lead to a complex
evolution of the glass structure as plastic flow proceeds,
changing, for instance, the number of available sites q as
well as the activation energyDG. This is in fact reflected in

FIG. 9. Selected stress drops for Vit105 at three different temperatures
between 25 and�25 °C. A remarkable increase in stress drop duration is
observed on lowering the temperature (reproduced from Ref. 43).

FIG. 10. Arrhenius plot of shear displacement jump velocity versus
inverse temperature for Vit105. Tests were conducted at different strain
rates between 10�3 and 10�5 s�1. Data taken from Refs. 43 and 45.

FIG. 11. Applying a shear stress s reduces the activation energy for
shear transformation zone operation from DG* to DG by an amount sV,
with V representing the activation volume.
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the highly transient response of the glass with the flow
stress decreasing rapidly during each slip instability. In
a very general context, attempts have been made to
account for this evolution in structure in the theoretical
framework of the effective temperature approach.54,55

In addition, Eq. (6) assumes STZs to operate indepen-
dently, that is, there is no coupling between neighboring
zones. The point has been raised that adjacent STZs
possibly do interact by some short-range stress fields.5

Recent mesoscale modeling has also provided new
insights into the spatial and temporal correlation of STZs
as a function of stress and temperature.56 Strong coupling
was directly associated with shear localization, while
uncorrelated STZ-activity seems more applicable to the
case of homogeneous flow at high temperatures.

While in the earlier analysis a single characteristic
value of DG was deduced, it is commonly understood that
STZs follow a distribution of possible activated states
(e.g., in Ref. 57). This is reflected in the concept of
potential energy landscapes.58 It could, however, be
argued that the most probable states will dominate the
net response of the glass as probed in experiments,
validating the approach taken.59

The above points demonstrate the complexity of the
inhomogeneous flow behavior of metallic glasses with
a general consensus regarding very fundamental aspects
remaining to be established. As the experimental technique
reviewed in this work is simple, it might present new ways
to validate some of the above theory and models proposed.

Finally, it is interesting to remark that thermal effects on
shear banding have also been found in other nonmetallic
amorphous materials. Kramer60 found that shear-band
growth velocities in polystyrene follow a thermally activated
mechanism. Interestingly, shear-band growth occurred by
a process similar to the SFP-scenario proposed in Sec. IV.
The associated velocities, being both stress- and temp-
erature-dependent, were much slower than those for metallic
glasses reported earlier, with the practical consequence that
the propagation of the shear-band tip could be followed in-
situ within easily accessible time scales.

Let us return to metallic glasses and discuss the im-
plications that can be drawn from the earlier results for
characterizing the shear-band dynamics both at ambient
and at low temperatures. We will first focus on the long-
debated issue of shear-band heating.

VII. IMPLICATIONS

A. Shear-band heating

Adiabatic heating associated with flow localization is
a well-known phenomenon discussed not only in the
metallic glass literature but also, for instance, in the field
of crystalline metals.61 In order for adiabatic conditions to
prevail, it is clear that the rate of localized heat generation
by plastic deformation needs to be faster than the rate at

which heat is conducted away from the band into the bulk.
As a consequence, shear-band heating in crystalline metals
is believed to be significant only at high strain rates.62

In metallic glasses, shear-band heating was originally
proposed to be a possible cause for an autocatalytic pro-
cess of softening and shear-band acceleration leading to
rapid, catastrophic failure as often observed under tensile
stress. Experimental attempts to measure shear-band
heating directly, however, were not successful. Different
techniques have therefore been used to indirectly infer
a temperature rise. These range from thermal imaging to
the fusible coating technique developed by Lewandowski
and Greer.20,24,39,47,51,63 From these studies, temperature
increases from as low as a few Kelvins to almost 1000 K
were predicted. The different models used essentially
diverge in their assumption of how fast shear-band
operation occurs as one of the most critical input param-
eters. To satisfy adiabatic conditions, studies revealing
high temperature rises require shear to occur at rates faster
than thermal diffusion, and hence deduce time scales of the
order of nanoseconds for shear-band propagation.24 By
contrast, the shear-event durations measured directly from
time-resolved serrated flow curves range from millisec-
onds up to a few seconds at low temperatures (see the
earlier sections and Ref. 45). It is clear that these time
scales are too long to justify adiabatic conditions during
shear, and when deployed in the respective models, they
yield insignificant temperature rises.22,39–41

Additional, indirect evidence for insignificant shear-
band heating during serrated flow is found in the distinct
trend of shear-band velocity with temperature (see
Sec. VI and Ref. 43). This indicates that shear banding
occurs under thermally equilibrated conditions within the
regime covered in these experiments. In other words, the
temperature within the shear band corresponds to that
applied externally and is not dominated by deformation-
induced heating.

Although it is generally accepted that shear-band heating
is not the cause of flow localization,24,64 recent modeling
work has focused on delineating the conditions under which
shear may still be expected to be accompanied by significant
temperature rises.32,47 A shift from “cold to hot shear
banding” at a critical sample size and machine stiffness
has thus been proposed to be responsible for a transition
from stable to unstable shear-band propagation.32 The
general picture emerging is hence that of shear-band heating
being significant only as long as shear is sufficiently fast.
This demonstrates the importance of quantifying the dy-
namics of shear-band propagation via experiments.

B. Shear-band viscosity

Recent studies have used the experimentally deter-
mined values for shear-band velocity to calculate an
apparent viscosity g using the relation33,40
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g5
s
_c

; ð7Þ

where s is the shear stress and _c is the strain rate within
a shear band. The shear stress s was assumed to be
constant since stress drop magnitudes typically equate to
1–2% of the total yield stress.

It is noted that when considering slip instabilities,
Eq. (7) is in fact applied to a situation far away from
steady-state in which the flow stress follows transient
behavior. Despite the fact that the results thus obtained
should hence be treated with care, they still provide useful
qualitative insights. Both studies agree in that the shear-
band viscosities calculated for ambient and low temper-
atures are comparable with similar values measured close
to or above the supercooled liquid regime, where homo-
geneous deformation prevails. This concurs with the
general perception that sufficient atomic mobility is
required to accommodate plastic flow. With the results
of the previous section, yielding can hence be viewed as
a mechanically induced glass transition.65–67 Within the
limits of negligible temperature rises, the drop in shear-
band viscosity may hence be attributed solely to
a mechanical origin, such as shear-induced dilatation.33,40

C. Dynamic origin of a transition
to non-serrated flow

For metallic glasses, a transition from serrated to non-
serrated flow above a critical applied strain rate has been
reported in the literature.31,68–70 Remarkably similar behav-
ior is found in many stick-slip systems, marking a transition
from intermittent to continuous system response (e.g., see
Ref. 71). For a metallic glass, a careful analysis revealed a
one-to-one correlation between the temperature-dependence
of the critical velocity for the transition to non-serrated flow
and that of the shear-band velocity as given in Fig. 10.45 It
was therefore concluded that non-serrated flow simply
results from overwhelming the shear-band velocity by the
crosshead velocity applied, essentially driving the shear
band at the imposed strain rate. This and a further study72

also confirmed that in the cases of both serrated and
non-serrated flow, plastic strain can be accommodated
within a single shear band. The fact that a shear band can
be driven at an imposed strain rate in a controlled manner
offers new paths for studying the inhomogeneous flow
behavior of metallic glasses. Preliminary work has shown
non-serrated flow of a single shear band to be unstable as the
stress level decreases rapidly with strain.72 This demon-
strates the significance of shear-induced softening during
inhomogeneous flow of metallic glasses.

VIII. CONCLUDING SUMMARY AND OUTLOOK

In the introduction we posed a series of open questions
regarding the fundamental understanding of shear

banding and inhomogeneous flow in metallic glasses.
We will now return to these questions and address them
individually, aligning our answers with the insights
gained by characterizing the dynamics of shear banding
as discussed above:

(1) Mechanism of shear banding bridging flow at
microscopic and macroscopic scales: In answering this
question, we will take a stick-slip theory perspective and
thus propose the following mechanism. A flow serration
is viewed as representing a full cycle of shear-band
operation, including its nucleation, propagation, and arrest.
Shear-band propagation, as reflected in stress drops,
corresponds to a stage of prolonged, uniform flow within
the band under transient stress. This results in a macroscopic
lateral displacement of the sample along the shear plane,
the magnitude of which depends on the amount of stress
relaxed as well as system characteristics. At a microscopic
level, plastic deformation is likely to be governed by the
transformation of atomic-scale clusters (STZs). It could,
however, be argued that the most probable states will
dominate the net response. A large number of STZs will be
required to populate the entire shear plane.As long as stress is
sufficiently high to accommodate flow, STZs will be
continuously activated, the rate of which determines the
overall dynamics of the shear process. Below a certain limit,
the stress is too low and plastic flow ceases, leading to shear-
band arrest. Reinitiation will only occur once a critical stress
is reached again. Considering the long time scales of shear-
band propagation (.ms) and the transience in stress,
dynamic changes in glass structure, affecting, for instance,
the density of STZs, are likely to occur during a shear
event.55 Incorporating this aspect in addition to possible
collective behavior of neighboring STZs56 in subsequent
modeling work opens a promising path for future study.

(2) Dynamics of shear-band propagation: A straight-
forward answer to this question by assigning a single
characteristic time scale to shear-band propagation is not
possible because of the thermally activated mechanism
governing the dynamics of shear banding. In conse-
quence, depending on temperature, shear-event durations
may cover a wide range from as short as a few milli-
seconds to time scales as long as seconds. Even longer
time scales may be inferred at yet lower temperatures.
However, because of the slow associated shear-band
velocities, flow curves at these temperatures are typically
non-serrated for reasonably accessible strain rates. It is
important to bear in mind that the long time scales of
shear-band propagation estimated from flow serrations
provide justification that shear banding cannot be viewed
as a catastrophic process, but instead follows a controlled,
thermally activated mechanism.

(3) Shear-band heating and autocatalytic softening: It
is clear that the time scales of shear-band propagation
determined experimentally from flow serrations are too
long to justify adiabatic conditions. Indirect evidence for
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insignificant shear-band heating is also found in the clear
dependence of shear-band velocity on temperature, in-
dicating that the local temperature within a band indeed
(only) corresponds to that globally applied. With recent
modeling work,32,47 however, the general picture emerg-
ing may be slightly more complex. The aim is to
differentiate between situations of “cold shear banding”
or those in which temperature rises and autocatalytic
softening leading to unstable shear may still be expected.
It is clear that with the shear-band velocity being de-
pendent on a range of different parameters, the dynamics
of shear only needs to be fast enough for adiabatic
conditions to prevail. However, experimental evidence
for the validity of this picture remains to be established. In
the same context, it is also clear that serrated flow can only
be observed under conditions of stable shear banding, and,
hence, it is not surprising to find, and in fact consistent
with the picture above, that shear-band velocities de-
termined from flow serrations lie within a regime of “cold
shear banding.”43 In conclusion, localized heating does
not appear to be associated with shear banding per se, but
conditions of sufficiently fast shear-band propagation may
be envisioned such that local temperature rises may
become significant. More work is needed to identify such
conditions via experiments.

In summary, we have shown how time-resolved
characterization of serrated flow can be used to quantify
the dynamics of shear banding in metallic glasses within
the framework of stick-slip theory. The insights thus
gained contribute toward deepening our understanding of
inhomogeneous flow, pointing at a model picture of
shear-band propagation, a thermally activated mechanism
of plastic flow as well as the origin of local softening. Our
suggestions for future work include establishing a refined
theoretical understanding of these yet predominantly phe-
nomenological experimental results. A promising approach
might incorporate recent modeling work55,56 in studying the
behavior of STZs to identify and characterize the atomic-
scale processes governing the dynamics of shear-band
propagation.
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