1,868 research outputs found

    Implementing the three-particle quantization condition including higher partial waves

    Full text link
    We present an implementation of the relativistic three-particle quantization condition including both ss- and dd-wave two-particle channels. For this, we develop a systematic expansion about threshold of the three-particle divergence-free K matrix, Kdf,3\mathcal{K}_{\mathrm{df,3}}, which is a generalization of the effective range expansion of the two-particle K matrix, K2\mathcal{K}_2. Relativistic invariance plays an important role in this expansion. We find that dd-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the threshold three-particle state on the two-particle dd-wave scattering amplitude, and use this to test our implementation. We show how strong two-particle dd-wave interactions can lead to significant effects on the finite-volume three-particle spectrum, including the possibility of a generalized three-particle Efimov-like bound state. We also explore the application to the 3π+3\pi^+ system, which is accessible to lattice QCD simulations, where we study the sensitivity of the spectrum to the components of Kdf,3\mathcal{K}_{\mathrm{df,3}}. Finally, we investigate the circumstances under which the quantization condition has unphysical solutions.Comment: 57 pages, 12 figures, 3 tables (v2: Made minor clarifications, updated a reference, fixed typos

    Dynamics of Entanglement Transfer Through Multipartite Dissipative Systems

    Full text link
    We study the dynamics of entanglement transfer in a system composed of two initially correlated three-level atoms, each located in a cavity interacting with its own reservoir. Instead of tracing out reservoir modes to describe the dynamics using the master equation approach, we consider explicitly the dynamics of the reservoirs. In this situation, we show that the entanglement is completely transferred from atoms to reservoirs. Although the cavities mediate this entanglement transfer, we show that under certain conditions, no entanglement is found in cavities throughout the dynamics. Considering the entanglement dynamics of interacting and non-interacting bipartite subsystems, we found time windows where the entanglement can only flow through interacting subsystems, depending on the system parameters.Comment: 8 pages, 11 figures, publishe in Physical Review

    Progress report on the relativistic three-particle quantization condition

    Get PDF
    We describe recent work on the relativistic three-particle quantization condition, generalizing and applying the original formalism of Hansen and Sharpe, and of Brice\~no, Hansen and Sharpe. In particular, we sketch three recent developments: the generalization of the formalism to include K-matrix poles; the numerical implementation of the quantization condition in the isotropic approximation; and ongoing work extending the description of the three-particle divergence-free K matrix beyond the isotropic approximation.Comment: 7 pages, 1 figure, Proceedings of Lattice 201

    Development of a new glass–ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration

    Get PDF
    This paper reports the results of a study of the feasibility of recycling the solid residues from domiciliary waste incineration by producing a glass-ceramic. The major components of the raw material (TIRME F+L), which was from a Spanish domiciliary incinerator, were CaO, SiO2 and Al2O3 but nucleating agents, such as TiO2, P2O5, and Fe2O3 were also present in reasonable amounts. It was found that a relatively stable glass with suitable viscosity could be obtained by mixing 65 wt% TIRME F+L with 35 wt% glass cullet. The heat treatment required to crystallise the glass produced from this mixture, designated TIR65, was nucleation at 560°C for 35 min followed by crystal growth at 100°C for 120 min. The resulting glass-ceramic contained a number of crystalline phases, the most stable being clinoenstatite (MgSiO3), or perhaps a pyroxenic phase which incorporates Ca, Mg and Al in its composition, and Äkermanite (Ca2MgSi2O7). The microstructure contained both fibre-like and dendritic crystals. The mechanical properties were acceptable for applications such as tiles for the building industry.Peer reviewe

    I=3I = 3 three-pion scattering amplitude from lattice QCD

    Full text link
    We analyze the spectrum of two- and three-pion states of maximal isospin obtained recently for isosymmetric QCD with pion mass M≈200  M\approx 200\;MeV in Ref. [1]. Using the relativistic three-particle quantization condition, we find ∌2σ\sim 2 \sigma evidence for a nonzero value for the contact part of the three-π+\pi^+ (I=3I=3) scattering amplitude. We also compare our results to leading-order chiral perturbation theory. We find good agreement at threshold, and some tension in the energy dependent part of the three-π+\pi^+scattering amplitude. We also find that the two-π+\pi^+ (I=2I=2) spectrum is fit well by an ss-wave phase shift that incorporates the expected Adler zero.Comment: Update to match published versio

    Plateau insulator transition in graphene

    Full text link
    The quantum Hall effect in a single-layer graphene sample is studied in strong magnetic fields up to 28 T. Our measurements reveal the existence of a metal- insulator transition from filling factor Îœ=−2\nu=-2 to Îœ=0\nu=0. The value of the universal scaling exponent is found to be Îș=0.57\kappa=0.57 in graphene and therefore in a truly two-dimensional system. This value of Îș\kappa is in agreement with the accepted universal value for the plateau-insulator transitions in standard quasi two-dimensional electron and hole gases.Comment: 10 pages, 5 figure

    Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina.

    Get PDF
    Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a(+)RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina

    Study on the Formation Processes of Wormlike Micelles Derived from Peptide Amphiphiles

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:ç”Č3567ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(ć·„ć­Š) ; 授䞎ćčŽæœˆæ—„:2012/3/15 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新590

    Comment on "On the temperature dependence of the Casimir effect"

    Full text link
    Recently, Brevik et al. [Phys. Rev. E 71, 056101 (2005)] adduced arguments against the traditional approach to the thermal Casimir force between real metals and in favor of one of the alternative approaches. The latter assumes zero contribution from the transverse electric mode at zero frequency in qualitative disagreement with unity as given by the thermal quantum field theory for ideal metals. Those authors claim that their approach is consistent with experiments as well as with thermodynamics. We demonstrate that these conclusions are incorrect. We show specifically that their results are contradicted by four recent experiments and also violate the third law of thermodynamics (the Nernst heat theorem).Comment: 11 pages, 3 figures, changed in accordance with the final published versio
    • 

    corecore