32 research outputs found

    Role of the Microbiome as the First Metal Detoxification Mechanism

    Get PDF
    Exposure to environmental toxins in water, soil and air are increasing with health effects, mainly in older ages and physiological states (childhood and pregnancy). The role of the microbiota has been widely studied with effects on the maintenance of health but this is only possible with a diet that promotes it. The traditional Mexican diet is rich in fiber, which has prebiotic effects and has found a higher excretion of arsenic and fluoride in adolescents who maintained a diet high in fiber derived from traditional foods. After several descriptive studies in the state of Guanajuato, since 2004, first with arsenic in drinking water in population of several communities, in 2015, it is achieved through an intervention study with a supplementation of several vitamins and minerals in population adolescent, a greater urinary arsenic and fluoride excretion, as well as a greater consumption of traditional foods such as beans, bananas, orange and quelites. Food is key to maintain a function of the microbiota, so its review and study should be encouraged

    Prebiotics and the Modulation on the Microbiota-GALT-Brain Axis

    Get PDF
    It is well known that there exists a bi-directional communication system between the enteric nervous system and central nervous system. Recent research has attempted to understand the influence of intestinal bacteria on the brain and behavior. In this manner, it has been observed that pathogenic bacterial products such as lipopolysaccharides (LPSs) can induce behavioral changes such as acute anxiety, depressive symptoms, cognitive deficits, and increased sensitivity to visceral pain. The modulation of LPS production through probiotics, prebiotics, and symbiotics can prevent these changes. In addition to the neuronal, endocrine, and metabolic pathways, it has been observed that the immune mechanism also exerts an influence on the gut-brain axis. The cells of the immune system can undergo phenotypic changes by the induction of certain bacterial species, which can have an important participation in the development of brain disorders. Although the main effect of prebiotics is through the stimulation of probiotic bacteria, in this chapter, we review the indirect therapeutic potential of prebiotics on the brain through the intestinal microbiota, the gut-associated lymphoid tissue (GALT), and other components of the intestinal lumen. Thus, the objective is to elucidate the mechanisms underlying its effects on the gut-brain axis. Here, we will summarize the possible therapeutic effect of prebiotics on intestinal microbiota, the gut-associated lymphoid tissue (GALT), and brain

    Preliminary field screening of maize landrace germplasm from northeastern Mexico under high temperatures

    Get PDF
    Northeastern Mexico has a wide variety of maize landraces that have not been characterized, and landraces vari¬eties may be a good source of new allelic diversity for useful traits. This study evaluated 28 accessions from Tam¬aulipas, in Northeast Mexico, chosen by phenology and for agronomic characteristics to represent the diversity of germplasm in the collection and agro-ecosystems of this area. They were evaluated under high temperature in the field as a basis for an efficient use of this maize germplasm in a breeding program; in particular we investigated changes in agronomic characteristics affected by high temperatures in all growing seasons. Results indicated that in late planting dates air temperatures become excessively high during the flowering period and growing season; in these conditions a loss in grain yield can be sustained. In this study, the loss initially manifests itself as a reduc¬tion in grain yield (> 32%) because of fewer grains per ear (>26%). Landrace maize accessions C-3030, C-3049, C-3015, Pob. I, Pob. II, ZEM-148 and C-4050 were identified with high relative yield and yield components traits under high temperature conditions. These accessions have greater agronomic stability, and also are potential donors of genes to improve maize tolerance to high temperature

    Stress compensation by gap monolayers for stacked InAs/GaAs quantum dots solar cells

    Get PDF
    In this work we report the stacking of 10 and 50 InAs quantum dots layers using 2 monolayers of GaP for stress compensation and a stack period of 18 nm on GaAs (001) substrates. Very good structural and optical quality is found in both samples. Vertical alignment of the dots is observed by transmission electron microscopy suggesting the existence of residual stress around them. Photocurrent measurements show light absorption up to 1.2 μm in the nanostructures together with a reduction in the blue response of the device. As a result of the phosphorus incorporation in the barriers, a very high thermal activation energy (431 meV) has also been obtained for the quantum dot emission

    InAs/AlGaAs quantum dot intermediate band solar cells with enlarged sub-bandgaps

    Full text link
    In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT

    Strain balanced quantum posts for intermediate band solar cells

    Get PDF
    In this work we present strain balanced InAs quantum post of exceptional length in the context of photovoltaics. We discuss the general properties of these nanostructures and their impact in the practical implementation of an intermediate band solar cell. We have studied the photocurrent generated by strain balanced quantum posts embedded in a GaAs single crystal, and compared our results with quantum dot based devices. The incorporation of phosphorous in the matrix to partially compensate the accumulated stress enables a significant increase of the quantum post maximum length. The relative importance of tunneling and thermal escape processes is found to depend strongly on the geometry of the nanostructures. tunneling and thermal escape processes is found to depend strongly on the geometry of the nanostructures

    Stress compensation by GaP monolayers for stacked InAs/GaAs quantum dots solar cells

    Get PDF
    Trabajo presentado en el 33rd IEEE Photovoltaic Specialists Conference, celebrado en San Diego, CA (Estados Unidos), del 11 al 16 de mayo de 2008In this work we report the stacking of 10 and 50 InAs quantum dots layers using 2 monolayers of GaP for stress compensation and a stack period of 18 nm on GaAs (001) substrates. Very good structural and optical quality is found in both samples. Vertical alignment of the dots is observed by transmission electron microscopy suggesting the existence of residual stress around them. Photocurrent measurements show light absorption up to 1.2 µm in the nanostructures together with a reduction in the blue response of the device. As a result of the phosphorus incorporation in the barriers, a very high thermal activation energy (431 meV) has also been obtained for the quantum dot emission.The authors gratefully acknowledge financial support by the Spanish MEC and CAM through projects 200560M089, S-05050/ENE-0310, TEC-2005-05781-C03- 01 and -02, Consolider-Ingenio 2010 CSD2006-0004, the Junta de Andalucia (project TEP383, group TEP120) and by the European Commission through the SANDIE Network of Excellence (NMP4-CT-2004-500101).Peer reviewe

    Deepint.net: A rapid deployment platform for smart territories

    Get PDF
    This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris—Vélib’ Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.This work has been partially supported by the European Regional Development Fund (ERDF) through the Interreg Spain-Portugal V-A Program (POCTEP) under grant 0677_DISRUPTIVE_2_E, the project My-TRAC: My TRAvel Companion (H2020-S2RJU-2017), the project LAPASSION, CITIES (CYTED 518RT0558) and the company DCSC. Pablo Chamoso’s research work has been funded through the Santander Iberoamerican Research Grants, call 2020/2021, under the direction of Paulo Novais
    corecore