11 research outputs found

    Identification of Natural Killer (NK) Cells in Lesions of Human Cutaneous Graft-Versus-Host Disease: Expression of a Novel NK-Associated Surface Antigen (Kp43) in Mononuclear Infiltrates

    Get PDF
    We performed an immunohistochemical analysis of skin biopsies from 13 allogeneic bone marrow transplant (BMT) recipients, undergoing either acute graft-versus-host-disease (aGVHD, n = 8) or chronic GVHD (cGVHD, n = 5). A panel of different monoclonal antibodies (MoAb) was employed including anti-CD2, -CD3, -CD4, -CD8, -CD11b, -CD16, -CD56, and -CD57, as well as a recently described reagent (HP-3B1) specific for a novel natural killer (NK)-associated cell-surface antigen (Kp43). Our data indicate that in a GVHD lesions the proportions of CD2+ cells often exceeded those detected with anti-CD3 MoAb. Double labeling confirmed the presence of CD2+ CD3- lymphocytes and suggested the coexpression in some cells of CD2 and CD11b. When MoAb specific for non-lineage-restricted NK-associated markers were employed, anti-CD56 and -CD57 occasionally stained variable numbers of lymphocytes (x¯ = 14.6% of mononuclear cells in 0.05mm2, range <1-48% and x¯ = 10.3%, range 2–25%, respectively), whereas no CD16+lymphocytes were observed. In contrast, most samples consistently displayed substantial proportions of Kp43+cells (&xsline = 32.8%, range 12–63%), which appeared CD3-and were mainly located at the dermoepidermal junction. On the other hand, sections from most (four of five) cGVHD lichenoid lesions analyzed displayed lower proportions of Kp43 + and CD56 + cells. Our data point out the interest of the anti-Kp43 MoAb to identify NK cells in aGVHD lesions, suggesting their pathogenetic participation

    Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocytedeficient mice reconstituted with human NK cells

    Get PDF
    Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNɣ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival

    Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocytedeficient mice reconstituted with human NK cells

    No full text
    Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNɣ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival

    Adaptive features of natural killer cells in multiple sclerosis

    No full text
    Human cytomegalovirus (HCMV) has been recently related with a lower susceptibility to multiple sclerosis (MS). HCMV promotes an adaptive development of NK cells bearing the CD94/NKG2C receptor with a characteristic phenotypic and functional profile. NK cells are proposed to play an immunoregulatory role in MS, and expansion of the NKG2C(+) subset was recently associated with reduced disability progression. To further explore this issue, additional adaptive NK cell markers, i.e., downregulation of FcεRIγ chain (FcRγ) and PLZF transcription factor, as well as antibody-dependent NK cell activation were assessed in controls and MS patients considering HCMV serology and clinical features. In line with previous reports, increased proportions of NKG2C(+), FcRγ(-), and PLZF(-) CD56dim NK cells were found in HCMV(+) cases. However, PLZF(-) NK cells were detected uncoupled from other adaptive markers within the CD56bright subset from HCMV(+) cases and among CD56dim NK cells from HCMV(-) MS patients, suggesting an additional effect of HCMV-independent factors in PLZF downregulation. Interferon-β therapy was associated with lower proportions of FcRγ(-) CD56dim NK cells in HCMV(+) and increased PLZF(-) CD56bright NK cells in HCMV(-) patients, pointing out to an influence of the cytokine on the expression of adaptive NK cell-associated markers. In addition, proportions of NKG2C(+) and FcRγ(-) NK cells differed in progressive MS patients as compared to controls and other clinical forms. Remarkably, an adaptive NK cell phenotype did not directly correlate with enhanced antibody-triggered degranulation and TNFα production in MS in contrast to controls. Altogether, our results provide novel insights into the putative influence of HCMV and adaptive NK cells in MS.This work was supported by grants FIS/PI17/00254, SAF 2016-80363-C2-1-R (Spanish Ministry of Economy and Competitiveness and FEDER), the EU FP7-MINECO Infect-ERA Program (PCIN-2015-191-C02-01), and Red Española de Esclerosis Múltiple (REEM) from the Instituto de Salud Carlos III, the European Regional Development Fund (Grant RD16/0015/0011), and the Spanish Ministry of Economy and Competitiveness

    Reduced expansion of CD94/NKG2C + NK cells in chronic lymphocytic leukemia and CLL-like monoclonal B-cell lymphocytosis is not related to increased human cytomegalovirus seronegativity or NKG2C deletions

    No full text
    Data de publicació electrònica: 22-02-2021Introduction: Dysregulated NK cell-mediated immune responses contribute to tumor evasion in chronic lymphocytic leukemia (CLL), although the NK cell compartment in CLL-like monoclonal B-cell lymphocytosis (MBL) is poorly understood. In healthy individuals, human cytomegalovirus (HCMV) induces the expansion of NK cells expressing high levels of CD94/NKG2C NK cell receptor (NKR) specific for HLA-E. Methods: We analyzed the expression of NKG2A, NKG2C, ILT2, KIR, CD161, and CD57 in 24 MBL and 37 CLL. NKG2C was genotyped in these patients and in 81 additional MBL/CLL, while NKG2C gene expression was assessed in 26 cases. In 8 CLL patients with increased lymphocytosis (≥20 × 109 /L), tumor HLA-E and HLA-G expression was evaluated. Results: NKR distribution did not significantly differ between MBL and CLL patients, although they exhibited reduced NKG2C+ NK cells compared with a non-CLL group (4.6% vs 12.2%, P = .012). HCMV+ patients showed increased percentages of NKG2C+ NK cells compared with HCMV- (7.3% vs 2.9%, P = .176). Frequencies of NKG2C deletions in MBL/CLL were similar to those of the general population. Low/undetectable NKG2C expression was found among NKG2C+/- (45%) and NKG2C+/+ (12%) patients. CLL cases with increased lymphocytosis displayed especially reduced NKG2C expression (1.8% vs 8.1%, P = .029) and tumor cells with high HLA-E (>98%) and variable HLA-G expression (12.4%, range: 0.5-56.4). CLL patients with low NKG2C expression (<7%) showed shorter time to first treatment (P = .037). Conclusion: Reduced percentages of CD94/NKG2C+ NK cells were observed in CLL and MBL patients independently of HCMV serostatus and NKG2C zygosity, particularly in CLL patients with increased lymphocytosis, which could potentially be related to the exposure to tumor cells

    NK cell-triggered CCL5/IFNγ-CXCL9/10 axis underlies the clinical efficacy of neoadjuvant anti-HER2 antibodies in breast cancer

    No full text
    Background: The variability in responses to neoadjuvant treatment with anti-HER2 antibodies prompts to personalized clinical management and the development of innovative treatment strategies. Tumor-infiltrating Natural Killer (TI-NK) cells can predict the efficacy of HER2-targeted antibodies independently from clinicopathological factors in primary HER2-positive breast cancer patients. Understanding the mechanism/s underlying this association would contribute to optimizing patient stratification and provide the rationale for combinatorial approaches with immunotherapy. Methods: We sought to uncover processes enriched in NK cell-infiltrated tumors as compared to NK cell-desert tumors by microarray analysis. Findings were validated in clinical trial-derived transcriptomic data. In vitro and in vivo preclinical models were used for mechanistic studies. Findings were analysed in clinical samples (tumor and serum) from breast cancer patients. Results: NK cell-infiltrated tumors were enriched in CCL5/IFNG-CXCL9/10 transcripts. In multivariate logistic regression analysis, IFNG levels underlie the association between TI-NK cells and pathological complete response to neoadjuvant treatment with trastuzumab. Mechanistically, the production of IFN-ɣ by CD16+ NK cells triggered the secretion of CXCL9/10 from cancer cells. This effect was associated to tumor growth control and the conversion of CD16 into CD16-CD103+ NK cells in humanized in vivo models. In human breast tumors, the CD16 and CD103 markers identified lineage-related NK cell subpopulations capable of producing CCL5 and IFN-ɣ, which correlated with tissue-resident CD8+ T cells. Finally, an early increase in serum CCL5/CXCL9 levels identified patients with NK cell-rich tumors showing good responses to anti-HER2 antibody-based neoadjuvant treatment. Conclusions: This study identifies specialized NK cell subsets as the source of IFN-ɣ influencing the clinical efficacy of anti-HER2 antibodies. It also reveals the potential of serum CCL5/CXCL9 as biomarkers for identifying patients with NK cell-rich tumors and favorable responses to anti-HER2 antibody-based neoadjuvant treatment.AM is supported by ISCiii/FEDER (PI19/00328, PI22/00040 and CIBERONC). The authors are supported by coordinated research projects from Asociación Española contra el Cáncer (GCB15152947MELE). AM and MLB are supported by Generalitat de Catalunya (2017 SGR 888 and 2023 SGR 863). ARe is funded by EC Horizon 2020. Marie Sklodowska Curie-Innovative Training Network (No. 765104; 2018–2021). JA, FR and AR are supported by ISCiii/FEDER (PI18/00006; PI21/00002 and CIBERONC) and by Generalitat de Catalunya (2017 SGR 507; 2021 SGR00776)
    corecore