6 research outputs found

    Probing the phase transition to a coherent 2D Kondo Lattice

    Full text link
    Kondo lattices are systems with unusual electronic properties that stem from strong electron correlation, typically studied in intermetallic 3D compounds containing lanthanides or actinides. Lowering the dimensionality of the system enhances the role of electron correlations providing a new tuning knob for the search of novel properties in strongly correlated quantum matter. The realization of a 2D Kondo lattice by stacking a single-layer Mott insulator on a metallic surface is reported. The temperature of the system is steadily lowered and by using high-resolution scanning tunneling spectroscopy, the phase transition leading to the Kondo lattice is followed. Above 27 K the interaction between the Mott insulator and the metal is negligible and both keep their original electronic properties intact. Below 27 K the Kondo screening of the localized electrons in the Mott insulator begins and below 11 K the formation of a coherent quantum electronic state extended to the entire sample, i.e., the Kondo lattice, takes place. By means of density functional theory, the electronic properties of the system and its evolution with temperature are explained. The findings contribute to the exploration of unconventional states in 2D correlated materialsThis work was supported by Ministerio de Ciencia, Innovación y Universidades through grants, PID2021-128011NB-I00 and PID2019-105458RBI00. Ministerio de Ciencia e Innovación and Comunidad de Madrid through grants “Materiales Disruptivos Bidimensionales (2D)” (MAD2DCM)-UAM and “Materiales Disruptivos Bidimensionales (2D)” (MAD2DCM)-IMDEA-NC funded by the Recovery, Transformation and Resilience Plan, and by NextGenerationEU from the European Union. Comunidad de Madrid through grants NMAT2D-CM P20128/NMT-4511 and NanoMagCost. IMDEA Nanoscience acknowledges support from the “‘Severo Ochoa”’ Programme for Centres of Excellence in R&D CEX2020-001039-S. IFIMAC acknowledges support from the “‘María de Maeztu”’ Programme for Units of Excellence in R&D CEX2018-000805-M. M.G. thanks Ministerio de Ciencia, Innovación y Universidades “Ramón y Cajal” Fellowship RYC2020-029317-I. Allocation of computing time at the Centro de Computación Científica at the Universidad Autónoma de Madrid, the CINECA Consortium INF16_npqcd Project, and Newton HPCC Computing Facility at the University of Calabria (MP

    Metastable polymorphic phases in monolayer TaTe2

    Get PDF
    Polymorphic phases and collective phenomena—such as charge density waves (CDWs)—in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine-tuning of growth conditions via methods such as molecular beam epitaxy (MBE) allows to unlock otherwise inaccessible polymorphic structures. Exploring and understanding the morphological and electronic properties of new phases of TMDs is an essential step to enable their exploitation in technological applications. Here, scanning tunneling microscopy (STM) is used to map MBE-grown monolayer (ML) TaTe2. This work reports the first observation of the 1H polymorphic phase, coexisting with the 1T, and demonstrates that their relative coverage can be controlled by adjusting synthesis parameters. Several superperiodic structures, compatible with CDWs, are observed to coexist on the 1T phase. Finally, this work provides theoretical insight on the delicate balance between Te…Te and Ta–Ta interactions that dictates the stability of the different phases. The findings demonstrate that TaTe2 is an ideal platform to investigate competing interactions, and indicate that accurate tuning of growth conditions is key to accessing metastable states in TMD

    Atomic-scale study of type-II Dirac semimetal PtTe2 surface

    Full text link
    Dirac semimetals (DSM) host linear bulk bands and topologically protected surface states, giving rise to exotic and robust properties. Platinum ditelluride (PtTe2) belongs to this interesting group of topological materials. Here, we employ scanning tunneling microscopy (STM) in combination with first-principles calculations to visualize and identify the native defects at the surface of a freshly cleaved PtTe2 crystal. Around these defects, short-wavelength electron density oscillations are observed. Fourier transform analysis of the energy-dependent quasiparticle interference patterns is in good agreement with our calculated joint density of states, demonstrating the singular properties of the surface of this type-II DSM. Our results evidence the power of STM in understanding the surface of topological material

    Caracterización estructural del crecimiento de siliciuros de hierro sobre Si(111) con microscopía de efecto túnel

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada. Fecha de lectura: 15-6-199
    corecore