16 research outputs found

    Teknologia kimikoa. Sistema kimikoen datuak eta konposatu kimikoen parametroak

    Get PDF
    50 p.Teknologia kimikoaren alorrean (ingeniaritzako kimika-arloa) ezinbestekoa da bibliografian agertzen diren sistema kimikoen zenbait datu eta konposatu kimiko industrialen hainbat propietate erabiltzea. Lehenengo aipatutakoen artean oreka-konstanteak, erredukziozko potentzialak edo erreakzio kimikoen entalpia-aldaketak daude; konposatuen propietateen artean, berriz, lurrun-presioa, bero-ahalmena edo entropia absolutua aurki daitezke. Datu horiek oinarrizkoak dira ingeniaritza kimikoko kalkuluak gauzatu ahal izateko; hala nola, bero-trukatzaile batean trukatzen den bero kantitatea zenbatesteko, galbanizazio elektrolitiko batean ezarriko den metalaren kantitatea aurreikusteko edo erreaktore baten tenperatura zehazteko. Datu horiek guztiak, normalean, liburu espezializatuen «Taulak» esaten zaien eranskinetan agertzen dira. Hala ere, nahiz eta oinarrizkoak diren, zaila izaten da ingeniaritza kimikoko kalkulu jakin bat egiteko beharrezkoak diren datu guztiak liburu bakarrean aurkitzea, liburu bakoitza bere edukian jorratutako gaietan baino ez delako ardazten. Ohikoa da zientzia kimikoa lantzen duten liburu klasikoetan zientzia kimikoaren datuak agertzea, besteak beste, elementuen elektronegatibotasuna, formazio-entalpiak, hainbat azido eta base ahulen oreka-konstanteak, konposatu ezorganikoen disolbagarritasun-biderkadura edo erredukzio-potentzial estandarrak. Ingeniaritza edo teknologia kimikoko bibliografian, aldiz, oinarrizko kimikaren konstanteak eta parametroak alde batera utzi ohi dira. Mota horretako liburuetan, prozesu industrial kimikoen unitateak diseinatzeko erabilgarriak diren datuak biltzen dira, hala nola: hainbat konposaturen urtze-, sublimazio- eta lurruntze-bero sorrak, bero espezifikoak, Antoineren parametroak, etab. Hori dela eta, normalean ikasleei iturri desberdinetatik hartutako datuak ematen zaizkie eta batzuetan datu horiek erreferentzia desberdinekin kalkulatuta daude. Esate baterako, ohikoa da tenperaturaren menpekoak diren konposatuen propietateak, bero-ahalmena kasu, tenperatura diferenteetan aurkitzea iturriaren arabera. Beste batzuetan, propietate berbera unitate ezberdinetan agertzen da liburuaren arabera, askotan sistema internazionala ez den unitate-sistemaren batean (sistema anglo-saxoia oraindik ere oso hedatuta dago teknologia kimikoaren arloan). Horretaz aparte, esan gabe doa arlo honetan eskuragarri dauden datu eta propietate gehienak ingelesez (nagusiki) eta gaztelaniaz argitaratuta daudela. Ondorioz, eskuarki ikasleei emandako «taulak» euskara ez den beste hizkuntza batean agertu ohi dira. Erakutsitako arrazoi guztiak direla eta, egileek uste dute dokumentu honetan aurkezten den datubilduma oso erabilgarria izan daitekeela unibertsitatean teknologia kimikoko arloan ikasten eta lan egiten duten ikasle, irakasle eta ikertzaileentzat

    Optimization of Charcoal Production Process from Woody Biomass Waste: Effect of Ni-Containing Catalysts on Pyrolysis Vapors

    Get PDF
    Woody biomass waste (Pinus radiata) coming from forestry activities has been pyrolyzed with the aim of obtaining charcoal and, at the same time, a hydrogen-rich gas fraction. The pyrolysis has been carried out in a laboratory scale continuous screw reactor, where carbonization takes place, connected to a vapor treatment reactor, at which the carbonization vapors are thermo-catalytically treated. Different peak temperatures have been studied in the carbonization process (500-900 degrees C), while the presence of different Ni-containing catalysts in the vapor treatment has been analyzed. Low temperature pyrolysis produces high liquid and solid yields, however, increasing the temperature progressively up to 900 degrees C drastically increases gas yield. The amount of nickel affects the vapors treatment phase, enhancing even further the production of interesting products such as hydrogen and reducing the generated liquids to very low yields. The gases obtained at very high temperatures (700-900 degrees C) in the presence of Ni-containing catalysts are rich in H-2 and CO, which makes them valuable for energy production, as hydrogen source, producer gas or reducing agent.The authors thank the Basque Country Government (consolidated research groups funding and Programa predoctoral de formacion de personal investigador no doctor), Befesa Steel R&D company for financial assistance for this work and Biotermiak Zeberio 2009 S.L. for the supply of fresh biomass

    Teknologia kimikoa. Sistema kimikoen datuak eta konposatu kimikoen parametroak

    Get PDF
    50 p.Teknologia kimikoaren alorrean (ingeniaritzako kimika-arloa) ezinbestekoa da bibliografian agertzen diren sistema kimikoen zenbait datu eta konposatu kimiko industrialen hainbat propietate erabiltzea. Lehenengo aipatutakoen artean oreka-konstanteak, erredukziozko potentzialak edo erreakzio kimikoen entalpia-aldaketak daude; konposatuen propietateen artean, berriz, lurrun-presioa, bero-ahalmena edo entropia absolutua aurki daitezke. Datu horiek oinarrizkoak dira ingeniaritza kimikoko kalkuluak gauzatu ahal izateko; hala nola, bero-trukatzaile batean trukatzen den bero kantitatea zenbatesteko, galbanizazio elektrolitiko batean ezarriko den metalaren kantitatea aurreikusteko edo erreaktore baten tenperatura zehazteko. Datu horiek guztiak, normalean, liburu espezializatuen «Taulak» esaten zaien eranskinetan agertzen dira. Hala ere, nahiz eta oinarrizkoak diren, zaila izaten da ingeniaritza kimikoko kalkulu jakin bat egiteko beharrezkoak diren datu guztiak liburu bakarrean aurkitzea, liburu bakoitza bere edukian jorratutako gaietan baino ez delako ardazten. Ohikoa da zientzia kimikoa lantzen duten liburu klasikoetan zientzia kimikoaren datuak agertzea, besteak beste, elementuen elektronegatibotasuna, formazio-entalpiak, hainbat azido eta base ahulen oreka-konstanteak, konposatu ezorganikoen disolbagarritasun-biderkadura edo erredukzio-potentzial estandarrak. Ingeniaritza edo teknologia kimikoko bibliografian, aldiz, oinarrizko kimikaren konstanteak eta parametroak alde batera utzi ohi dira. Mota horretako liburuetan, prozesu industrial kimikoen unitateak diseinatzeko erabilgarriak diren datuak biltzen dira, hala nola: hainbat konposaturen urtze-, sublimazio- eta lurruntze-bero sorrak, bero espezifikoak, Antoineren parametroak, etab. Hori dela eta, normalean ikasleei iturri desberdinetatik hartutako datuak ematen zaizkie eta batzuetan datu horiek erreferentzia desberdinekin kalkulatuta daude. Esate baterako, ohikoa da tenperaturaren menpekoak diren konposatuen propietateak, bero-ahalmena kasu, tenperatura diferenteetan aurkitzea iturriaren arabera. Beste batzuetan, propietate berbera unitate ezberdinetan agertzen da liburuaren arabera, askotan sistema internazionala ez den unitate-sistemaren batean (sistema anglo-saxoia oraindik ere oso hedatuta dago teknologia kimikoaren arloan). Horretaz aparte, esan gabe doa arlo honetan eskuragarri dauden datu eta propietate gehienak ingelesez (nagusiki) eta gaztelaniaz argitaratuta daudela. Ondorioz, eskuarki ikasleei emandako «taulak» euskara ez den beste hizkuntza batean agertu ohi dira. Erakutsitako arrazoi guztiak direla eta, egileek uste dute dokumentu honetan aurkezten den datubilduma oso erabilgarria izan daitekeela unibertsitatean teknologia kimikoko arloan ikasten eta lan egiten duten ikasle, irakasle eta ikertzaileentzat

    Composite waste recycling: Predictive simulation of the pyrolysis vapours and gases upgrading process in Aspen plus.

    Get PDF
    [EN] Waste generation is one of the greatest problems of present times, and the recycling of carbon fibre reinforced composites one big challenge to face. Currently, no resin valorisation is done in thermal fibre recycling methods. However, when pyrolysis is used, additional valuable compounds (syngas or H2-rich gas) could be obtained by upgrading the generated vapours and gases. This work presents the thermodynamic and kinetic multi-reaction modelling of the pyrolysis vapours and gases upgrading process in Aspen Plus software. These models forecast the theoretical and in-between scenario of a thermal upgrading process of an experimentally characterised vapours and gases stream (a blend of thirty-five compounds). Indeed, the influence of temperature (500°C-1200°C) and pressure (DeltaP=0, 1 and 2bar) operating parameters are analysed in the outlet composition, residence time and possible reaction mechanisms occurring. Validation of the kinetic model has been done comparing predicted outlet composition with experimental data (at 700°C and 900°C with DeltaP=0bar) for H2 (g), CO (g), CO2 (g), CH4 (g), H2O (v) and C (s). Kinetic and experimental results show the same tendency with temperature, validating the model for further research. Good kinetic fit is obtained for H2 (g) (absolute error: 0.5wt% at constant temperature and 0.3wt% at variable temperature) and H2O (v) shows the highest error at variable T (8.8wt%). Both simulation and experimental results evolve towards simpler, less toxic and higher generation of hydrogen-rich gas with increasing operating temperature and pressure.The authors want to thank the Ministry of Science and Innovation of Spain (Ref. PID2019-110770RB-I00) and the Basque Government (Ref. KK-2020/00107, ELKARTEK program) for the funding to carry out the investigation. The authors also thank the financing granted to the “Sustainable Process Engineering” research group for the 2016–2021 period (Basque Government, Ref. IT993-16) and are grateful to Iñaki Múgica from Su Medioambiente (SUMA Soluciones Medioambientales, S.L.) for the technical support provided

    On the Road to Sustainable Energy Storage Technologies: Synthesis of Anodes for Na-Ion Batteries from Biowaste

    Get PDF
    Hard carbon is one of the most promising anode materials for sodium-ion batteries. In this work, new types of biomass-derived hard carbons were obtained through pyrolysis of different kinds of agro-industrial biowaste (corncob, apple pomace, olive mill solid waste, defatted grape seed and dried grape skin). Furthermore, the influence of pretreating the biowaste samples by hydrothermal carbonization and acid hydrolysis was also studied. Except for the olive mill solid waste, discharge capacities typical of biowaste-derived hard carbons were obtained in every case (≈300 mAh·g−1 at C/15). Furthermore, it seems that hydrothermal carbonization could improve the discharge capacity of biowaste samples derived from different nature at high cycling rates, which are the closest conditions to real applications.This research was funded by the Ministerio de Ciencia e Innovación (PID2019-107468RB-C21) and Gobierno Vasco/Eusko Jaurlaritza (IT-1226-19 and IT-993-16)

    Oil Production by Pyrolysis of Real Plastic Waste

    Get PDF
    The aim of this paper is for the production of oils processed in refineries to come from the pyrolysis of real waste from the high plastic content rejected by the recycling industry of the Basque Country (Spain). Concretely, the rejected waste streams were collected from (1) a light packaging waste sorting plant, (2) the paper recycling industry, and (3) a waste treatment plant of electrical and electronic equipment (WEEE). The influence of pre-treatments (mechanical separation operations) and temperature on the yield and quality of the liquid fraction were evaluated. In order to study the pre-treatment effect, the samples were pyrolyzed at 460 °C for 1 h. As pre-treatments concentrate on the suitable fraction for pyrolysis and reduce the undesirable materials (metals, PVC, PET, inorganics, cellulosic materials), they improve the yield to liquid products and considerably reduce the halogen content. The sample with the highest polyolefin content achieved the highest liquid yield (70.6 wt.% at 460 °C) and the lowest chlorine content (160 ppm) among the investigated samples and, therefore, was the most suitable liquid to use as refinery feedstock. The effect of temperature on the pyrolysis of this sample was studied in the range of 430–490 °C. As the temperature increased the liquid yield increased and solid yield decreased, indicating that the conversion was maximized. At 490 °C, the pyrolysis oil with the highest calorific value (44.3 MJ kg−1) and paraffinic content (65% area), the lowest chlorine content (128 ppm) and more than 50 wt.% of diesel was obtained.This research was funded by the Basque Government through the project with reference KK-2020/00107 (ELKARTEK program) and through the support of the SUPREN group (GIC10/31, GIC15/13, S-PE13UN126 (SAI13/190))

    Secondary Raw Materials from Residual Carbon Fiber-Reinforced Composites by An Upgraded Pyrolysis Process

    Get PDF
    This paper presents a process where carbon fibers and hydrogen can be recovered simultaneously through a two-stage thermal treatment of an epoxy-carbon fiber composite. For this purpose, some pieces of epoxy resin reinforced with carbon fiber fabrics have been fabricated and, after curing, have been pyrolyzed in an installation consisting of two reactors. In the first one, the thermal decomposition of the resin takes place, and in the second one, the gases and vapors coming from the first reactor are thermally treated. Once this process is completed, the solid generated is oxidized with air to eliminate the resin residues and carbonaceous products from the fibers surface. The recovered carbon fiber fabrics have been reused to make new cured parts and their electrical and mechanical properties have been measured. The results show that it is possible to obtain carbon fiber fabrics that can be processed as they leave the recycling process and that retain 80% of the tensile modulus, 70% of the flexural strength, and 50% of the interlaminar shear strength. At the same time, a gaseous stream with more than 66% by volume of hydrogen can be obtained, reaching a maximum of 81.7%.This research was funded by the Ministry of Science and Innovation of the Spanish Government through the project with reference PID2019-110770RB-I00 and by the Basque Government through the project with reference KK-2020/00107 (ELKARTEK program). Besides, the Basque Government also contributed to this work by means of the regular funding granted to consolidated research teams (IT993-16) and the researcher training grant awarded to Naia Gastelu

    A Preliminary Study on the Use of Highly Aromatic Pyrolysis Oils Coming from Plastic Waste as Alternative Liquid Fuels

    Get PDF
    In this work, the low-temperature pyrolysis of a real plastic mixture sample collected at a WEEE-authorised recycling facility has been investigated. The sample was pyrolysed in a batch reactor in different temperature and residence time conditions and auto-generated pressure by following a factorial design, with the objective of maximising the liquid (oil) fraction. Furthermore, the main polymers constituting the real sample were also pyrolysed in order to understand their role in the generation of oil. The pyrolysis oils were characterised and compared with commercial fuel oil number 6. The results showed that in comparison to commercial fuel oil, pyrolysis oils coming from WEEE plastic waste had similar heating values, were lighter and less viscous and presented similar toxicity profiles in fumes of combustion.This research was funded by the Department of Economic Development and Infrastructures of The Basque Government through its ELKARTEK 2023 Program (NEOPLAST 2 Project, Reference KK-2023/00060), and also by CDTI (Centro para el Desarrollo Tecnológico Industrial), within the framework of grants for Technological Centers of Excellence “Cervera” (OSIRIS Project, CER-20211009)

    Combustion of a Solid Recovered Fuel (SRF) Produced from the Polymeric Fraction of Automotive Shredder Residue (ASR)

    Get PDF
    The use of alternative fuels derived from residues in energy-intensive industries that rely on fossil fuels can cause considerable energy cost savings, but also significant environmental benefits by conserving non-renewable resources and reducing waste disposal. However, the switching from conventional to alternative fuels is challenging for industries, which require a sound understanding of the properties and combustion characteristics of the alternative fuel, in order to adequately adapt their industrial processes and equipment for its utilization. In this work, a solid recovered fuel (SRF) obtained from the polymeric fraction of an automotive shredder residue is tested for use as an alternative fuel for scrap preheating in an aluminium refinery. The material and chemical composition of the SRF has been extensively characterized using proximate and ultimate analyses, calorific values and thermal degradation studies. Considering the calorific value and the chlorine and mercury contents measured, the SRF can be designated as class code NCV 1; Cl 2; Hg 2 (EN ISO 21640:2021). The combustion of the SRF was studied in a laboratory-scale pilot plant, where the effects of temperature, flow, and an oxidizer were determined. The ash remaining after combustion, the collected liquid, and the generated gas phase were analysed in each test. It was observed that increasing the residence time of the gas at a high temperature allowed for a better combustion of the SRF. The oxidizer type was important for increasing the total combustion of the vapour compounds generated during the oxidation of the SRF and for avoiding uncontrolled combustion.This research was conducted as part of the REVaMP project, which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 869882. The authors want to thank the funding by the Basque Government for financing the activity of the “Sustainable Process Engineering” group as a consolidated research group (GIC15/13, IT993-16)

    Chemical recycling of municipal packaging waste by pyrolysis

    No full text
    [EN]The present doctoral thesis centers on studying pyrolysis as a chemical recycling technique for rejected packaging waste fractions coming from separation and sorting plants. The pyrolysis experiments have been carried out in a lab-scale installation equipped with a 3.5 L semi-batch reactor and a condensation and collection system for the liquids and gases generated. In the present thesis, an experimental study on the conventional pyrolysis process applied to the aforementioned waste fractions has been conducted, as well as the study of non-conventional or advanced pyrolysis processes such as catalytic and stepwise pyrolysis. The study of the operating parameters has been carried out using a mixed plastics simulated sample, the composition of which is similar to that found in real fractions, and subsequently the optimized process has been applied to real packaging waste. An exhaustive characterization of the solids, liquids and gases obtained in the process has been made after each experiment and their potential uses have been established. Finally, an empirical model that will predict the pyrolysis yields (% organic liquid, % aqueous liquid, % gases, % char, % inorganic solid) as a function of the composition of the initial sample has been developed. As a result of the experimental work done, the requirements have been established for an industrial packaging waste pyrolysis plant that aims to be sufficiently versatile as to generate useful products regardless of the nature of the raw material.[SP]La presente tesis doctoral se centra en el estudio del proceso de pirólisis como técnica de reciclado químico de fracciones rechazo de plantas de separación y clasificación de residuos municipales de envases y embalajes. Los ensayos de pirólisis se han llevado a cabo en una planta piloto provista de un reactor semi-batch de 3,5 L de capacidad y un sistema de condensación y recolección de los productos líquidos y gaseosos generados. En la presente tesis se ha realizado un Estudio experimental del proceso de pirólisis convencional aplicado a los residuos de envases mencionados, así como un estudio de procesos de pirólisis no convencionales o avanzados, como son la pirólisis catalítica y la pirólisis por etapas. El análisis de los parámetros de operación se ha llevado a cabo utilizando como muestra una mezcla de plásticos simulada, de composición semejante a las fracciones reales, y posteriormente se ha aplicado el proceso optimizado a residuos reales de envases y embalajes. En todos los ensayos se han caracterizado exhaustivamente los productos sólidos, líquidos y gaseosos obtenidos, determinando su composición y propiedades, y estableciendo sus potenciales utilidades. Finalmente, se ha establecido un modelo empírico que permite predecir los rendimientos de pirólisis (% líquido orgánico, % líquido acuoso, % gases, % char, % sólidos inorgánicos) en función de la composición de la muestra inicial. En base al trabajo experimental realizado se han establecido los requisitos que debería cumplir una planta industrial de pirólisis de residuos de envases a fin de ser suficientemente versátil para generar productos aprovechables cualquiera que sea la naturaleza de la materia prima.[BAQ]Pirolisia hiriko ontzi-hondakinen erreusen birziklapenerako aukera gisa aztertu da tesi lan honetan. Pirolisi saiakuntzak 3,5 litro bolumeneko semi-batch erreaktoreaz eta likido eta gas produktuen kondentsazio eta bilketen sistemaz osatutako laborategiko instalazio batean egin dira. Lan honetan, pirolisi konbentzionalaz gain, pirolisi prozesu aurreratuak ere aztertu dira, besteak beste, pirolisi katalitikoa edota etapaz etapa egindako pirolisia. Lan parametroak simulatutako lagin bat erabiliz aztertu eta optimizatu dira eta, ondoren, lortutako parametroak lagin errealen saiakuntzetan erabili dira. Saiakuntza guztietan, lortu diren produktu gaseoso, likido eta solidoak sakonki karakterizatu dira eta ondoren izan litzaketen erabilerak aztertu dira. Azkenik, pirolisi errendimenduak (likido organikoak %, likido urtsuak %, gasak %, char %, solido inorganikoak %) erabilitako laginaren konposizioaren arabera zenbatesteko tresna bat garatu da (modelo enpirikoa). Egindako lan esperimentalean oinarrituta, ontzi-hondakinen erreusa tratatzeko instalazio industrial batek bete beharreko baldintzak ezarri dira, instalazioa, lehengaiak edonolako ezaugarriak dituztelarik, produktu baliagarri bihurtzeko gai izan dadin.Programa de formación de investigadores del Gobierno Vasco (BFI07.249) y Ministerio Educación y Ciencia (CTQ 2007-67070/PPQ
    corecore