21 research outputs found

    GTPáz aktiválo fehérjék (GAPok) élettani szerepe és szabályozása = Physiologcial role and regulation of GTPase activating proteins (GAPs)

    Get PDF
    Kísérleteinkben három, a Rho/Rac családba tartozó kis G-fehérjére ható GTPáz aktiváló fehérje (GAP) élettani szerepét vizsgáltuk 1.) A p50GAP-ról megállapítottuk, hogy jellegzetes, magkörüli elhelyezkedést mutat. Transzferrin- valamint EGF-receptorokkal végzett kolokalizációs vizsgálatok alapján azonosítottuk, hogy a p50GAP Sec-14 doménje felelős a Rab11-et tartalmazó késői endoszómákon történő lokalizációért valamint a transzferrin-felvétel gátlásáért. Először írtunk le kapcsolatot a Rho valamint a Rab családba tartozó kis G-fehérjék között a receptor-mediált endocitózis szabályozásában. 2.) A p190GAP fehérje GAP aktivitásában kimutattuk két különböző kináz által bekövetkező foszforiláció eltérő hatását. A GSK-3 foszforiláció egyaránt gátolja a p190 Rho- és RacGAP aktivitását. Ezzel szemben a PKC-foszforiláció önmagában nem befolyásolja a GAP-aktivitást, viszont hatásosan gátolja a savanyú foszfolipidekhez történő kötődést. A savanyú foszfolipidek egyedülálló módon megváltoztatják az enzim szubsztrát-specificitását: csökkentik a RhoGAP aktivitást és növelik a RacGAP aktivitást. 3.) Felfedeztünk egy eddig ismeretlen GAP-ot, ami in vitro körülmények között Rac-specifikusnak bizonyult és elsősorban hemopoetikus sejtekben fejeződik ki. siRNS-el történt csendesítése növelte PLB sejtekben az opszonizált részecskék fagocitózisát valamint az általuk kiváltott szuperoxid-termelést, viszont nem befolyásolta a PMA-val indukált választ. | Our experiments concentrated on the physiological role of three GTPase activating proteins (GAPs) acting on Rho/Rac family small GTPases. 1.) p50GAP showed a characteristic, perinuclear localization. On the basis of colocalization with transferrin- and EGF-receptors we demonstrated that the Sec14 domain of p50GAP was responsible both for localization on Rab11-containing late endosomes and for inhibition of transferrin uptake. We suggested that p50GAP provides a link between Rab and Rho family small GTPases in the regulation of receptor-mediated endocytosis. 2.) Investigating the regulation of p190GAP, we revealed the different effects of phosphorylation by different kinases. Phosphorylation by GSK-3 inhibits both the Rho- and the RacGAP activity of the protein. In contrast, phosphorylation by PKC does not directly affect the GAP activity, but it prevents binding of p190GAP to acidic phospholipids, which have a unique effect: they change the substrate preference of p190GAP inhibiting the RhoGAP and promoting the RacGAP activity. 3.) We revealed a new, hitherto unknown GAP that proved to be Rac-specific in in vitro assays, and seems to be specifically expressed in haemopoetic cells. Silencing of this new GAP in PLB cells resulted in an increase of phagocytosis of opsonized particles and of superoxide production induced by opsonized zymosan or bacteria. In contrast, responses induced by PMA were not altered

    The master role of polarized NIS expression in regulating iodine metabolism in the human body

    Get PDF
    ABSTRACT Objective: The aim of this study was to investigate how polarized sodium iodide symporter (NIS) expression may regulate iodide metabolism in vivo. Materials and methods: Polarized NIS expression was analyzed in tissues that accumulate iodide by the use of immunohistochemistry and polyclonal antibody against the C-terminal end of human NIS (hNIS). Results: Iodide absorption in the human intestine occurs via NIS expressed in the apical membrane. Iodide is secreted into the lumen of the stomach and salivary glands via NIS expressed in the basolateral membrane and then circulates back from the small intestine to the bloodstream via NIS expressed in the apical membrane. Conclusion: Polarized NIS expression in the human body regulates intestinal-bloodstream recirculation of iodide, perhaps prolonging the availability of iodide in the bloodstream. This leads to more efficient iodide trapping by the thyroid gland. Understanding the regulation and manipulating gastrointestinal iodide recirculation could increase radioiodine availability during theranostic NIS applications

    Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina

    No full text
    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate- induced latency time of spreading depression was extended by the glycine B binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d- aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing. © 2012 Elsevier B.V

    Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders

    No full text
    Dopamine (DA), as one of the major neurotransmitters in the central nervous system (CNS) and periphery, exerts its actions through five types of receptors which belong to two major subfamilies such as D1-like (i.e., D1 and D5 receptors) and D2-like (i.e., D2, D3 and D4) receptors. Dopamine D3 receptor (D3R) was cloned 30 years ago, and its distribution in the CNS and in the periphery, molecular structure, cellular signaling mechanisms have been largely explored. Involvement of D3Rs has been recognized in several CNS functions such as movement control, cognition, learning, reward, emotional regulation and social behavior. D3Rs have become a promising target of drug research and great efforts have been made to obtain high affinity ligands (selective agonists, partial agonists and antagonists) in order to elucidate D3R functions. There has been a strong drive behind the efforts to find drug-like compounds with high affinity and selectivity and various functionality for D3Rs in the hope that they would have potential treatment options in CNS diseases such as schizophrenia, drug abuse, Parkinson’s disease, depression, and restless leg syndrome. In this review, we provide an overview and update of the major aspects of research related to D3Rs: distribution in the CNS and periphery, signaling and molecular properties, the status of ligands available for D3R research (agonists, antagonists and partial agonists), behavioral functions of D3Rs, the role in neural networks, and we provide a summary on how the D3R-related drug research has been translated to human therapy

    Convergent cross-species pro-cognitive effects of RGH-235, a new potent and selective histamine H3 receptor antagonist/inverse agonist

    No full text
    The histamine H3 receptor is a favourable target for the treatment of cognitive deficits. Here we report the in vitro and in vivo profile of RGH-235, a new potent, selective, and orally active H3 receptor antagonist/inverse agonist developed by Gedeon Richter Plc. Radioligand binding and functional assays were used for in vitro profiling. Procognitive efficacy was investigated in rodent cognitive tests, in models of attention deficit hyperactive dis- order (ADHD) and in cognitive tests of high translational value (rat touch screen visual discrimination test, primate fixed-foreperiod visual reaction time task). Results were supported by pharmacokinetic studies, neurotransmitter release, sleep EEG and dipsogenia. RGH-235 displayed high affinity to H3 receptors (Ki = 3.0–9.2 nM, depending on species), without affinity to H1, H2 or H4 receptors and >100 other targets. RGH-235 was an inverse agonist ([35S] GTPγS binding) and antagonist (pERK1/2 ELISA), showing favourable kinetics, inhibition of the imetit-induced dipsogenia and moderate effects on sleep-wake EEG. RGH-235 stimulated neurotransmitter release both in vitro and in vivo. RGH-235 was active in spontaneously hypertensive rats (SHR), generally considered as a model of ADHD, and revealed a robust pro-cognitive profile both in rodent and primate tests (in 0.3–1 mg/kg) and in models of high translational value (e.g. in a rodent touch screen test and in non- human primates). The multiple and convergent procognitive effects of RGH-235 support the view that benefi- cial cognitive effects can be linked to antagonism/inverse agonism of H3 receptors

    Neuroprotective effect of L-kynurenine sulfate administered before focal cerebral ischemia in mice and global cerebral ischemia in gerbils

    No full text
    Excessive stimulation of N-methyl-D-aspartate (NMDA) receptors during ischemia contributes to apoptotic and excitotoxic nerve cell death. Kynurenic acid is a selective antagonist at the glycine co-agonist site of the NMDA receptor complex at low concentration, and it is a broad-spectrum excitatory amino acid receptor blocker at high concentration. Kynurenic acid provides neuroprotection in animal models of cerebral ischemia only at very high doses as it hardly crosses the blood-brain barrier. The neuroprotective effect of L-kynurenine sulfate, a precursor of kynurenic acid, was therefore studied because L-kynurenine readily crosses the blood-brain barrier. L-kynurenine sulfate was administered 15 min before permanent focal cerebral ischemia produced by electrocoagulation of the distal middle cerebral artery in mice. L-kynurenine sulfate induced a small decrease in the surface area of the brain infarction (10%, P<0.05) at 30 mg/kg i.p., and it caused strong reductions in infarct size (24-25%, P<0.01) at 100 and 300 mg/kg i.p. Treatment of gerbils with L-kynurenine sulfate at 300 mg/kg i.p. 2 h before a 3-min bilateral carotid occlusion decreased (40%, P<0.01) the pyramidal cell loss in the CAl area of the hippocampus. Furthermore, L-kynurenine sulfate inhibited the ischemia-induced hypermotility (77%, P<0.001), and decreased (50%, P<0.01) the ischemia-induced deterioration of spontaneous alternation, a measure of spatial memory, without altering the rectal temperature. In conclusion, the administration of L-kynurenine can elevate the brain concentration of kynurenic acid to neuroprotective levels, suggesting the potential clinical usefulness of L-kynurenine for the prevention of neuronal loss. (c) 2007 Elsevier B.V. All rights reserved
    corecore