718 research outputs found

    Detection of the tagged or untagged photons in acousto-optic imaging of thick highly scattering media by photorefractive adaptive holography

    Full text link
    We propose an original adaptive wavefront holographic setup based on the photorefractive effect (PR), to make real-time measurements of acousto-optic signals in thick scattering media, with a high flux collection at high rates for breast tumor detection. We describe here our present state of art and understanding on the problem of breast imaging with PR detection of the acousto-optic signal

    Transient behavior of surface plasmon polaritons scattered at a subwavelength groove

    Get PDF
    We present a numerical study and analytical model of the optical near-field diffracted in the vicinity of subwavelength grooves milled in silver surfaces. The Green's tensor approach permits computation of the phase and amplitude dependence of the diffracted wave as a function of the groove geometry. It is shown that the field diffracted along the interface by the groove is equivalent to replacing the groove by an oscillating dipolar line source. An analytic expression is derived from the Green's function formalism, that reproduces well the asymptotic surface plasmon polariton (SPP) wave as well as the transient surface wave in the near-zone close to the groove. The agreement between this model and the full simulation is very good, showing that the transient "near-zone" regime does not depend on the precise shape of the groove. Finally, it is shown that a composite diffractive evanescent wave model that includes the asymptotic SPP can describe the wavelength evolution in this transient near-zone. Such a semi-analytical model may be useful for the design and optimization of more elaborate photonic circuits whose behavior in large part will be controlled by surface waves.Comment: 12 pages, 10 figure

    Spectral imbalance and the normalized dissipation rate of turbulence

    Full text link
    The normalized turbulent dissipation rate CϔC_\epsilon is studied in decaying and forced turbulence by direct numerical simulations, large-eddy simulations, and closure calculations. A large difference in the values of CϔC_\epsilon is observed for the two types of turbulence. This difference is found at moderate Reynolds number, and it is shown that it persists at high Reynolds number, where the value of CϔC_\epsilon becomes independent of the Reynolds number, but is still not unique. This difference can be explained by the influence of the nonlinear cascade time that introduces a spectral disequilibrium for statistically nonstationary turbulence. Phenomenological analysis yields simple analytical models that satisfactorily reproduce the numerical results. These simple spectral models also reproduce and explain the increase of CϔC_\epsilon at low Reynolds number that is observed in the simulations

    Saving Cultural Heritage with Digital Make-Believe: Machine Learning and Digital Techniques to the Rescue

    Get PDF
    The application of digital methods for content-based curation and dissemination of cultural heritage data offers unique advantages for physical sites at risk of damage. In areas affected by 2011 Arab spring, digital may be the only approach to create believable cultural experiences. We propose a framework incorporating computational methods such as: digital image processing, multi-lingual text analysis, and 3D modelling, to facilitate enhanced data archive, federated search, and analysis. Potential use cases include experiential search, damage assessment, virtual site reconstruction, and provision of augmented information for education and cultural preservation. This paper presents initial findings from an empirical evaluation of existing scene classification methods, applied to detection of cultural heritage sites in the Palmyra region. Results indicate that deep learning offers an appropriate solution to semantic annotation of publicly available cultural heritage image data

    Genetic Rat Models of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disease characterized by a specific loss of dopaminergic neurons. Although the vast majority of PD cases are idiopathic in nature, there is a subset that contains genetic links. Of the genes that have been linked to PD, α-synuclein and leucine-rich repeat kinase 2 have been used to develop transgenic rat models of the disease. In this paper we focused on the various transgenic rat models of PD in terms of their ability to mimic key symptoms of PD in a progressive manner. In general, we found that most of these models provided useful tools for the early stages of PD, but the development of new transgenic rats that present significant neuropathologic and motoric deficits in a progressive manner that more accurately mimics PD is needed

    Convergence of the Generalized Volume Averaging Method on a Convection-Diffusion Problem: A Spectral Perspective

    Get PDF
    A mixed formulation is proposed and analyzed mathematically for coupled convection-diïŹ€usion in heterogeneous medias. Transfer in solid parts driven by pure diïŹ€usion is coupled with convection-diïŹ€usion transfer in ïŹ‚uid parts. This study is carried out for translation-invariant geometries (general inïŹnite cylinders) and unidirectional ïŹ‚ows. This formulation brings to the fore a new convection-diïŹ€usion operator, the properties of which are mathematically studied: its symmetry is ïŹrst shown using a suitable scalar product. It is proved to be self-adjoint with compact resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsectorial operator. The decomposition of the convection-diïŹ€usion problem into a generalized eigenvalue problem permits the reduction of the original three-dimensional problem into a two-dimensional one. Despite the operator being nonsectorial, a complete solution on the inïŹnite cylinder, associated to a step change of the wall temperature at the origin, is exhibited with the help of the operator’s two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided for axisymmetrical situations, the convergence of which is found to be consistent with the numerical discretization

    Intermittency of velocity time increments in turbulence

    Get PDF
    We analyze the statistics of turbulent velocity fluctuations in the time domain. Three cases are computed numerically and compared: (i) the time traces of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the "dynamic" case); (ii) the time evolution of tracers advected by a frozen turbulent field (the "static" case), and (iii) the evolution in time of the velocity recorded at a fixed location in an evolving Eulerian velocity field, as it would be measured by a local probe (referred to as the "virtual probe" case). We observe that the static case and the virtual probe cases share many properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is clearly different; it bears the signature of the global dynamics of the flow.Comment: 5 pages, 3 figures, to appear in PR
    • 

    corecore