37 research outputs found

    Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of Antarctic krill: differences in thermal habitats, responses and implications under climate change

    Get PDF
    A comparative thermal tolerance study was undertaken on two sister species of Euphausiids (Antarctic krills) Euphausia superba and Euphausia crystallorophias. Both are essential components of the Southern Ocean ecosystem, but occupy distinct environmental geographical locations with slightly different temperature regimes. They therefore provide a useful model system for the investigation of adaptations to thermal tolerance. Methodology/Principal Finding Initial CTmax studies showed that E. superba was slightly more thermotolerant than E. crystallorophias. Five Hsp70 mRNAs were characterized from the RNAseq data of both species and subsequent expression kinetics studies revealed notable differences in induction of each of the 5 orthologues between the two species, with E. crystallorophias reacting more rapidly than E. superba. Furthermore, analyses conducted to estimate the evolutionary rates and selection strengths acting on each gene tended to support the hypothesis that diversifying selection has contributed to the diversification of this gene family, and led to the selective relaxation on the inducible C form with its possible loss of function in the two krill species. Conclusions The sensitivity of the epipelagic species E. crystallorophias to temperature variations and/or its adaptation to cold is enhanced when compared with its sister species, E. superba. These results indicate that ice krill could be the first of the two species to be impacted by the warming of coastal waters of the Austral ocean in the coming years due to climate change

    Paraphyly of the subgenus Anaphlebotomus and creation of Madaphlebotomus subg. nov. (Phlebotominae: Phlebotomus)

    No full text
    International audienceThe systematic position of the Malagasy Phlebotomus (Diptera: Psychodidae) species was assessed in molecular phylogenetic studies. Three molecular markers were sequenced: cytochrome b of the mitochondrial DNA; ITS2, and the D8 domain of the ribosomal DNA. The following species were studied: Phlebotomus (Anaphlebotomus) berentiensis, Phlebotomus (Anaphlebotomus) fertei, Phlebotomus (Anaphlebotomus) fontenillei, Phlebotomus (Anaphlebotomus) vaomalalae and Phlebotomus (Anaphlebotomus) vincenti from Madagascar; Phlebotomus (Anaphlebotomus) stantoni from Asia, and Phlebotomus (Anaphlebotomus) rodhaini from Africa. The following outgroups were selected: Phlebotomus (Euphlebotomus) argentipes, Phlebotomus (Euphlebotomus) barguesae, Phlebotomus (Larroussius) perfiliewi s.l. and Phlebotomus (Adlerius) simici. Each marker analysed by maximum parsimony and maximum likelihood supports the monophyly of the Malagasy phlebotomus spp. Consequently, we create a new subgenus for these species: Madaphlebotomus subg. nov. This molecular individualization is reinforced by the originality of their spermathecae and by the fact that their geographical distribution is limited to Madagascar, and considers the high level of endemism on this island

    Estimating Symbiont Abundances and Gill Surface Areas in Specimens of the Hydrothermal Vent Mussel Bathymodiolus puteoserpentis Maintained in Pressure Vessels

    Get PDF
    International audienceThe hydrothermal vent mussel Bathymodiolus puteoserpentis hosts gill-associated sulfur- and methane-oxidizing bacteria which sustain host nutrition and allow it to reach high densities at various sites along the northern Mid-Atlantic Ridge. Previous studies have demonstrated that in similar dual symbioses, relative abundances of each bacterial type could change following variations in symbiont substrate availabilities. In this study, pressurized recovery and incubations in pressure vessels were used to test whether B. puteoserpentis symbionts displayed similar behavior in the presence of symbiont substrates. The relative abundances of both types of symbionts were analyzed using fluorescence in situ hybridization (FISH) and group-specific gene copy numbers were assessed using qPCR. Specimens sampled using isobaric and non-isobaric recovery contained similar relative proportions (in surface coverage) of sulfur- and methane-oxidizing bacteria indicating that recovery type did not have impact on measured relative areas. Similarly, pressurized incubations with different substrates did lead to significant differences in the relative surface coverage of the two types of bacteria, although slight variations were measured with qPCR, suggesting changes in relative abundances of gene copy numbers but not in relative areas covered. Total gill surface areas and total bacterial numbers in specimens were estimated for the first time. Symbiont bearing-mussels display exchange surfaces about 20-fold higher than those found in similar-sized coastal mussels, and mean bacterial numbers of 2.5*1012 per specimen were estimated. This emphasizes that symbiotic mussels are a major reservoir of bacteria in vent ecosystems

    Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia 1 naticoides (North East-Pacific Rise)

    No full text
    International audienceMollusks, and particularly gastropods, are one of the major taxonomic groups at vents. In these ecosystems, devoid of light, chemoautotrophic bacteria are at the base of the food web and symbiotic association between metazoa and these bacteria is numerous. Nevertheless, apart few “large-size” well-known species, the “small-size” gastropods (shell <5 mm), although very abundant, remain poorly studied regarding symbioses. We investigated here Cyathermia naticoides (Warén and Bouchet in Zool Scr 18(1), 1989), a small coiled gastropod found in abundance on the East Pacific Rise among Riftia pachyptila tubes, and usually inferred to graze on tubeworm bacterial cover, and/or filter feeding. Among mollusks, symbioses are well known in large species and almost exclusively rely on sulfide or methane-oxidizing proteobacterial endosymbionts, occurring within the host tissues in gill epithelial bacteriocytes. Combining several approaches (molecular biology, microscopy, stable isotopes analyses), we described here an unusual symbiosis, where autotrophic filamentous Epsilonproteobacteria are located extracellularly, at the base of host gill filaments. Numerous endocytotic lysosome-like structures were observed in the gill epithelium of the animal suggesting bacteria may contribute to its nutrition through intracellular digestion by gill cells. Additional food source by non-symbiotic proteobacteria grazed on R. pachyptila tubes could complete the diet. The possible role of temperature in the selection of Epsilon- vs Gammaproteobacterial partners is discussed

    Blow Your Nose, Shrimp! Unexpectedly Dense Bacterial Communities Occur on the Antennae and Antennules of Hydrothermal Vent Shrimp

    Get PDF
    International audienceIn crustaceans, as in other animals, perception of environmental cues is of key importance for a wide range of interactions with the environment and congeners. Chemoreception involves mainly the antennae and antennules, which carry sensilla that detect water-borne chemicals. The functional importance of these as exchange surfaces in the shrimp's sensory perception requires them to remain free of any microorganism and deposit that could impair the fixation of odorant molecules on sensory neurons. We report here the occurrence of an unexpected dense bacterial colonization on surface of the antennae and antennules of four hydrothermal vent shrimp species. Microscopic observation, qPCR and 16S rRNA barcoding reveal the abundance, diversity and taxonomic composition of these bacterial communities, that are compared with those found on a related coastal shrimp. Bacterial abundances vary among species. Bacteria are almost absent in coastal shrimp, meanwhile they fully cover the antennal flagella in some hydrothermal vent species. Epsilon-and Gammaproteobacteria dominate the hydrothermal shrimp-associated communities, whereas Alphaproteobacteria and Bacteroidetes are dominant in the coastal ones. Bacteria associated with vent shrimp species are most similar to known chemoautotrophic sulfur-oxidizers. Potential roles of these bacteria on the hydrothermal shrimp antennae and antennules and on sensory functions are discussed

    Low-diversity bacterial microbiota in Southern Ocean representatives of lanternfish genera Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae)

    Get PDF
    International audienceMyctophids are among the most abundant mesopelagic teleost fishes worldwide. They are dominant in the Southern Ocean, an extreme environment where they are important both as consumers of zooplankton as well as food items for larger predators. Various studies have investigated myctophids diet, but no data is yet available regarding their associated microbiota, despite that the significance of bacterial communities to fish health and adaptation is increasingly acknowledged. In order to document microbiota in key fish groups from the Southern Ocean, the bacterial communities associated with the gut, fin, gills and light organs of members of six species within the three myctophid genera Electrona, Protomyctophum and Gymnoscopelus were characterized using a 16S rRNA-based metabarcoding approach. Gut communities display limited diversity of mostly fish-specific lineages likely involved in food processing. Fin and skin communities display diversity levels and compositions resembling more those found in surrounding seawater. Community compositions are similar between genera Electrona and Protomyctophum, that differ from those found in Gymnoscopelus and in water. Low abundances of potentially light-emitting bacteria in light organs support the hypothesis of host production of light. This first description of myctophid-associated microbiota, and among the first on fish from the Southern Ocean, emphasizes the need to extend microbiome research beyond economically-important species, and start addressing ecologically-relevant species
    corecore