940,233 research outputs found

    Local gauge invariance implies Siegert's hypothesis

    Get PDF
    The nonrelativistic Ward-Takahashi identity, a consequence of local gauge invariance in quantum mechanics, shows the necessity of exchange current contributions in case of nonlocal and/or isospin-dependent potentials. It also implies Siegert's hypothesis: in the nonrelativistic limit, two-body charge densities identically vanish. Neither current conservation, which follows from global gauge invariance, nor the constraints of (lowest order) relativity are sufficient to arrive at this result. Furthermore, a low-energy theorem for exchange contributions is established.Comment: 5 pages, REVTE

    Foldable conduit Patent

    Get PDF
    Foldable conduit capable of springing back as self erecting structural membe

    A conceptual approach for noncontact calorimetry in space

    Get PDF
    A concept is developed and described which allows to measure the heat capacity and the effective thermal conductivity of stable and undercooled liquid metals and alloys in an electromagnetic levitation apparatus. We propose to use an ac pulse heating method which is used nowadays as a standard technique for precision measurement of low temperature heat capacities. The ideal process parameters including the drop diameter D, temperature T, and frequency of measurement ω can be optimized when the following relations hold for the external and internal relaxation time constants τ_1 and τ_2, respectively: ωτ_1≳10 and ωτ_2<0.1. Then heat capacity data can be obtained with an accuracy of better than 1% with D about 5 to 10 mm, T between 1200 and 1800 K and ω between 0.1 and 1 Hz for typical metals and alloys

    Closed-loop two-echelon repairable item systems

    Get PDF
    In this paper we consider closed loop two-echelon repairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal operational condition. Each production facility consists of a number of identical machines which may fail incidentally. Each repair facility may be considered to be a multi-server station, while any transport from the depot to the bases is modeled as an ample server. At all bases as well as at the depot, ready-for-use spare parts (machines) are kept in stock. Once a machine in the production cell of a certain base fails, it is replaced by a ready-for-use machine from that base's stock, if available. The failed machine is either repaired at the base or repaired at the central repair facility. In the case of local repair, the machine is added to the local spare parts stock as a ready-for-use machine after repair. If a repair at the depot is needed, the base orders a machine from the central spare parts stock to replenish its local stock, while the failed machine is added to the central stock after repair. Orders are satisfied on a first-come-first-served basis while any requirement that cannot be satisfied immediately either at the bases or at the depot is backlogged. In case of a backlog at a certain base, that base's production cell performs worse. To determine the steady state probabilities of the system, we develop a slightly aggregated system model and propose a special near-product-form solution that provides excellent approximations of relevant performance measures. The depot repair shop is modeled as a server with state-dependent service rates, of which the parameters follow from an application of Norton's theorem for Closed Queuing Networks. A special adaptation to a general Multi-Class MDA algorithm is proposed, on which the approximations are based. All relevant performance measures can be calculated with errors which are generally less than one percent, when compared to simulation results. \u

    Melt viscosities of lattice polymers using a Kramers potential treatment

    Full text link
    Kramers relaxation times τK\tau_{K} and relaxation times τR\tau_{R} and τG\tau_{G} for the end-to-end distances and for center of mass diffusion are calculated for dense systems of athermal lattice chains. τK\tau_{K} is defined from the response of the radius of gyration to a Kramers potential which approximately describes the effect of a stationary shear flow. It is shown that within an intermediate range of chain lengths N the relaxation times τR\tau_{R} and τK\tau_{K} exhibit the same scaling with N, suggesting that N-dependent melt-viscosities for non-entangled chains can be obtained from the Kramers equilibrium concept.Comment: submitted to: Journal of Chemical Physic

    Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    Get PDF
    The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms

    A monostrain test apparatus

    Get PDF
    Test apparatus is designed for determining tensile strength, modulus of elasticity, elongation, and thermal coefficient of contraction or expansion of uniformly shaped plastics, adhesives, and foam materials over temperature range of 700 to 90 K (800 to -300). Tests may be used in design quality control, and in evaluation of new adhesives and plastic materials
    corecore