206 research outputs found

    Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-ĪŗB signaling

    Get PDF
    Transforming growth factor (TGF)-Ī²-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-ĪŗB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-ĪŗB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.published_or_final_versio

    Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-ĪŗB signaling

    Get PDF
    Transforming growth factor (TGF)-Ī²-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-ĪŗB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-ĪŗB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.published_or_final_versio

    Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors

    Get PDF
    Motivation: Phospholipid scramblases (PLSCRs) constitute a family of cytoplasmic membrane-associated proteins that were identified based upon their capacity to mediate a Ca2+-dependent bidirectional movement of phospholipids across membrane bilayers, thereby collapsing the normally asymmetric distribution of such lipids in cell membranes. The exact function and mechanism(s) of these proteins nevertheless remains obscure: data from several laboratories now suggest that in addition to their putative role in mediating transbilayer flip/flop of membrane lipids, the PLSCRs may also function to regulate diverse processes including signaling, apoptosis, cell proliferation and transcription. A major impediment to deducing the molecular details underlying the seemingly disparate biology of these proteins is the current absence of any representative molecular structures to provide guidance to the experimental investigation of their function

    Vorescoreā€”fold recognition improved by rescoring of protein structure models

    Get PDF
    Summary: The identification of good protein structure models and their appropriate ranking is a crucial problem in structure prediction and fold recognition. For many alignment methods, rescoring of alignment-induced models using structural information can improve the separation of useful and less useful models as compared with the alignment score. Vorescore, a template-based protein structure model rescoring system is introduced. The method scores the model structure against the template used for the modeling using Vorolign. The method works on models from different alignment methods and incorporates both knowledge from the prediction method and the rescoring

    A taxonomic re-assessment of Oligodon cinereus (GĆ¼nther, 1864) (Squamata, Serpentes, Colubridae) populations from southern Indochina

    Get PDF
    The ashy kukri snake Oligodon cinereus (GĆ¼nther, 1864) is a widely distributed and morphologically variable species found throughout mainland Southeast Asia. In this paper, we re-assessed the taxonomic status of O. cinereus populations found in southern Indochina (southern Vietnam, Cambodia, and southern Laos), including the recently described Cat Tien kukri snake Oligodon cattienensis Vassilieva et al., 2013, which was previously confused with this species. Phylogenetic analyses using mitochondrial DNA from the 12Sā€“16S ribosomal subunit and cytochrome b gene revealed that O. cattienensis is embedded in a mixed clade containing samples of the subspecies O. cinereus pallidocinctus, which bears a dorsal color pattern with white crossbars and black edges. This clade forms a strongly supported sister group with a topotypic sample of O. cinereus cinereus, representing populations bearing a uniform dorsal color pattern and slight reticulate markings, however the genetic divergence between the two clades is very low. The morphological characters used to distinguish O. cattienensis from O. cinereus sensu lato broadly overlap and supposed differences in hemipenial morphology between the two taxa are due to outdated terminologies used to describe the organ. We relegate both O. cattienensis and O. cinereus pallidocinctus to the junior synonymy of O. cinereus and consider all color patterns of this species found near the type locality in Cambodia, southern Laos, and southern Vietnam to represent O. cinereus sensu stricto. Future integrative investigations across the range of O. cinereus sensu lato are needed to resolve the status of the remaining subspecies and synonyms associated with this taxon. Problems associated with hemipenial morphology and Oligodon systematics are also discussed

    Self-Replenishing Vascularized Fouling-Release Surfaces

    Get PDF
    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.Engineering and Applied Science
    • ā€¦
    corecore