2,548 research outputs found

    A randomized, double-blind, parallel, placebo-controlled study to evaluate efficacy and safety of a synergistic multi-herbal extract blend KaraHeart™ in supporting healthy cholesterol levels

    Get PDF
    Background: Hyperlipidemia is a condition involving abnormally high levels of lipids in the blood. Hyperlipidemia is a major risk factor for cardiovascular diseases and refers to either high levels of triglycerides (TGL) or cholesterol. Herbal supplements have been used in the management of cholesterol levels in Ayurveda, a complete medical system originating in India. KaraHeart™ is a multi-herbal extract synergistic blend that may help in the management of healthy cholesterol levels. The current study tested the efficacy, tolerability, and safety of KaraHeart™ versus a placebo in the management of cholesterol levels of patients with mild hyperlipidemia.Methods: This was a randomized, double-blind, parallel, and placebo-controlled study. A total of 100 patients were divided into two groups. One group was given KaraHeart™ and the other group was given a placebo for 120 days. Treatment results were assessed by checking the lipid profile parameters such as total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), and TGL.Results: The study found that the herbal supplement KaraHeart™ significantly reduced levels of LDL, VLDL, TGL, and total cholesterol, while increasing the levels of HDL in the blood. Additionally, the study concluded that KaraHeart™ was safe to use.Conclusions: KaraHeart™ was shown to be safe and effective in the management of cholesterol levels

    സംയോജിത മത്സ്യകൃഷി (Integrated fish farming)

    Get PDF
    The basic principle of integrated fish farming is the effective utilization of the wealth of water as well as land through adoption of carefully planned production methods with the least amount of wastage. In this farming system through an appropriate and balanced combination of dairy, piggery,poultry, duckery and horticulture with fish farming, it is possible to obtain high production combined with high profits through the integrated use of land and water. The fertility of the water-body is enhanced through the use of organic manures

    Theoretical treatment of diffusion and kinetics of osmium redox polymer mediated glucose oxidase enzyme electrodes: analytical expression of current density for varying potential.

    Get PDF
    We present for the first time a mathematical model of osmium redox polymer mediated glucose oxidase enzyme electrodes. This model is based on a system of three coupled nonlinear reaction-diffusion equations under steady-state conditions for biochemical reactions occurring in the biofuel cells that describes the oxidized mediator, oxygen and substrate (Glucose) concentration within the biofuel cell. Simple analytical expressions for the concentration of oxidized mediator, oxygen and substrate and the corresponding current-potential response have been derived for all the values of reaction diffusion parameters using the new homotopy perturbation method (NHPM).The current-potential response in osmium redox polymer mediated glucose oxidase enzyme electrodes is discussed. The analytical results for the concentrations are also compared with numerical results and a satisfactory agreement is noted. The influence of diffusion coefficient of mediator, thickens of the film, turnover rate of Gluocose Oxidase and Michaelis-Menten constant on current-potential curve is also analyzed

    A new mathematical modelling using Homotopyperturbation method to solve nonlinear equations in enzymatic glucose fuel cells.

    Get PDF
    For the first time a mathematical modelling of the enzymatic glucose membraneless fuel cell with direct electron transfer has been reported. The niche of this mathematical modelling is the description of the new Homotopy perturbation method to solve the nonlinear differential equations that describes glucose concentration and hydrogen ions respectively. The analytical results of an enzymatic fuel cell should be used, while developing fuel cell, to estimate its various kinetic parameters to attain the highest power value. Our analytical results are compared with limiting case results and satisfactory agreement is noted. The influence of parameters on the concentrations are discusse

    Theoretical Bounds on Control-Plane Self-Monitoring in Routing Protocols

    Get PDF
    Routing protocols rely on the cooperation of nodes in the network to both forward packets and to select the forwarding routes. There have been several instances in which an entire network's routing collapsed simply because a seemingly insignificant set of nodes reported erroneous routing information to their neighbors. It may have been possible for other nodes to trigger an automated response and prevent the problem by analyzing received routing information for inconsistencies that revealed the errors. Our theoretical study seeks to understand when nodes can detect the existence of errors in the implementation of route selection elsewhere in the network through monitoring their own routing states for inconsistencies. We start by constructing a methodology, called Strong-Detection, that helps answer the question. We then apply Strong-Detection to three classes of routing protocols: distance-vector, path-vector, and link-state. For each class, we derive low-complexity, self-monitoring algorithms that use the routing state created by these routing protocols to identify any detectable anomalies. These algorithms are then used to compare and contrast the self-monitoring power these various classes of protocols possess. We also study the trade-off between their state-information complexity and ability to identify routing anomalies

    Time-fractional Cahn-Hilliard equation: Well-posedness, degeneracy, and numerical solutions

    Full text link
    In this paper, we derive the time-fractional Cahn-Hilliard equation from continuum mixture theory with a modification of Fick's law of diffusion. This model describes the process of phase separation with nonlocal memory effects. We analyze the existence, uniqueness, and regularity of weak solutions of the time-fractional Cahn-Hilliard equation. In this regard, we consider degenerating mobility functions and free energies of Landau, Flory--Huggins and double-obstacle type. We apply the Faedo-Galerkin method to the system, derive energy estimates, and use compactness theorems to pass to the limit in the discrete form. In order to compensate for the missing chain rule of fractional derivatives, we prove a fractional chain inequality for semiconvex functions. The work concludes with numerical simulations and a sensitivity analysis showing the influence of the fractional power. Here, we consider a convolution quadrature scheme for the time-fractional component, and use a mixed finite element method for the space discretization

    Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells

    Get PDF
    The gingival epithelium is a physical and immunological barrier to the microbiota of the oral cavity, which interact through soluble mediators with the immune cells that patrol the tissue at the gingival epithelium. We sought to develop a three-dimensional gingivae-biofilm interface model using a commercially available gingival epithelium to study the tissue inflammatory response to oral biofilms associated with “health”, “gingivitis” and “periodontitis”. These biofilms were developed by sequential addition of microorganisms to mimic the formation of supra- and sub-gingival plaque in vivo. Secondly, to mimic the interactions between gingival epithelium and immune cells in vivo, we integrated peripheral blood mononuclear cells and CD14+ monocytes into our three-dimensional model and were able to assess the inflammatory response in the immune cells cultured with and without gingival epithelium. We describe a differential inflammatory response in immune cells cultured with epithelial tissue, and more so following incubation with epithelium stimulated by “gingivitis-associated” biofilm. These results suggest that gingival epithelium-derived soluble mediators may control the inflammatory status of immune cells in vitro, and therefore targeting of the epithelial response may offer novel therapies. This multi-cellular interface model, both of microbial and host origin, offers a robust in vitro platform to investigate host-pathogens at the epithelial surface

    Factorizing Numbers with the Gauss Sum Technique: NMR Implementations

    Get PDF
    Several physics-based algorithms for factorizing large number were recently published. A notable recent one by Schleich et al. uses Gauss sums for distinguishing between factors and non-factors. We demonstrate two NMR techniques that evaluate Gauss sums and thus implement their algorithm. The first one is based on differential excitation of a single spin magnetization by a cascade of RF pulses. The second method is based on spatial averaging and selective refocusing of magnetization for Gauss sums corresponding to factors. All factors of 16637 and 52882363 are successfully obtained.Comment: 4 pages, 4 figures; Abstract and Conclusion are slightly modified. References added and formatted with Bibte
    corecore