71 research outputs found

    Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells

    Get PDF
    Human umbilical cord blood-derived mesenchymal stem cells (MSCs) are known to possess the potential for multiple differentiations abilities in vitro and in vivo. In canine system, studying stem cell therapy is important, but so far, stem cells from canine were not identified and characterized. In this study, we successfully isolated and characterized MSCs from the canine umbilical cord and its fetal blood. Canine MSCs (cMSCs) were grown in medium containing low glucose DMEM with 20% FBS. The cMSCs have stem cells expression patterns which are concerned with MSCs surface markers by fluorescence-activated cell sorter analysis. The cMSCs had multipotent abilities. In the neuronal differentiation study, the cMSCs expressed the neuronal markers glial fibrillary acidic protein (GFAP), neuronal class III β tubulin (Tuj-1), neurofilament M (NF160) in the basal culture media. After neuronal differentiation, the cMSCs expressed the neuronal markers Nestin, GFAP, Tuj-1, microtubule-associated protein 2, NF160. In the osteogenic & chondrogenic differentiation studies, cMSCs were stained with alizarin red and toluidine blue staining, respectively. With osteogenic differentiation, the cMSCs presented osteoblastic differentiation genes by RT-PCR. This finding also suggests that cMSCs might have the ability to differentiate multipotentially. It was concluded that isolated MSCs from canine cord blood have multipotential differentiation abilities. Therefore, it is suggested that cMSCs may represent a be a good model system for stem cell biology and could be useful as a therapeutic modality for canine incurable or intractable diseases, including spinal cord injuries in future regenerative medicine studies

    Safety and Efficacy of Second-Generation Everolimus-Eluting Xience V Stents Versus Zotarolimus-Eluting Resolute Stents in Real-World Practice Patient-Related and Stent-Related Outcomes From the Multicenter Prospective EXCELLENT and RESOLUTE-Korea Registries

    Get PDF
    ObjectivesThis study sought to compare the safety and efficacy of the Xience V/Promus everolimus-eluting stent (EES) (Abbott Vascular, Temecula, California) with the Endeavor Resolute zotarolimus-eluting stent (ZES-R) (Medtronic Cardiovascular, Santa Rosa, California) in “all-comer” cohorts.BackgroundOnly 2 randomized controlled trials have compared these stents.MethodsThe EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting) and RESOLUTE-Korea registries prospectively enrolled 3,056 patients treated with the EES and 1,998 patients treated with the ZES-R, respectively, without exclusions. Stent-related composite outcomes (target lesion failure [TLF]) and patient-related composite outcomes were compared in crude and propensity score-matched analyses.ResultsOf 5,054 patients, 3,830 (75.8%) had off-label indication (2,217 treated with EES and 1,613 treated with ZES-R). The stent-related outcome (82 [2.7%] vs. 58 [2.9%], p = 0.662) and the patient-related outcome (225 [7.4%] vs. 153 [7.7%], p = 0.702) did not differ between EES and ZES-R, respectively, at 1 year, which was corroborated by similar results from the propensity score-matched cohort. The rate of definite or probable stent thrombosis (18 [0.6%] vs. 7 [0.4%], p = 0.306) also was similar. In multivariate analysis, off-label indication was the strongest predictor of TLF (adjusted hazard ratio: 2.882; 95% confidence interval: 1.226 to 6.779; p = 0.015).ConclusionsIn this robust real-world registry with unrestricted use of EES and ZES-R, both stents showed comparable safety and efficacy at 1-year follow-up. Overall incidences of TLF and definite stent thrombosis were low, even in the patients with off-label indication, suggesting excellent safety and efficacy of both types of second-generation drug-eluting stents

    Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes

    No full text
    Identification of the immunomodulatory and regenerative properties of mesenchymal stem cells (MSCs) have made them an attractive alternative therapeutic option for diseases with no effective treatment options. Numerous clinical trials have followed; however, issues such as infusional toxicity and cellular rejection have been reported. To address these problems associated with cell-based therapy, MSC exosome therapy was developed and has shown promising clinical outcomes. MSC exosomes are nanosized vesicles secreted from MSCs and represent a non-cellular therapeutic agent. MSC exosomes retain therapeutic features of the cells from which they originated including genetic material, lipids, and proteins. Similar to MSCs, exosomes can induce cell differentiation, immunoregulation, angiogenesis, and tumor suppression. MSC exosomes have therefore been employed in several experimental models and clinical studies. Here, we review the therapeutic potential of MSC-derived exosomes and summarize currently ongoing clinical trials according to disease type. In addition, we propose several functional enhancement strategies for the effective clinical application of MSC exosome therapy

    Induced pluripotent stem cell-derived hematopoietic stem and progenitor cells: potential, challenges, and future perspectives

    No full text
    Hematopoietic stem and progenitor cells (HSPCs) are responsible for the lifetime dynamics of hematopoiesis, as they are well known for their self-renewing ability and multipotency to differentiate into all types of blood cells, including both myeloid and lymphoid lineages. However, due to their limited amount and accessibility, there is a strong need to search out alternative methods to produce HSPCs. In this review, we suggest induced pluripotent stem cells (iPSCs) as a new viable source for HSPC production because these cells have the potential to self-renew while being relatively easy to modify. Recent studies have revealed that the recapitulation of definitive hematopoiesis is the key to the successful in vitro production of HSPCs with multilineage potential. Therefore, we summarized recent progress in establishing the generation of definitive HSPCs with high maturity and functionality in vitro. Definitive HSPCs can be used in disease modeling and gene therapy for genetic blood disorders via gene modification in iPSCs, applied in cellular immunotherapy in the form of a universal chimeric antigen receptor system, and may recapitulate the intricate immune system within the iPSC-derived organoids that closely mimic the in vivo pathophysiological environment. In summary, this review provides an overview of the generation of HSPCs from iPSCs, in terms of the developmental process of hematopoiesis, in vitro attempts to produce iPSC-derived definitive HSPCs, and the following applications of these cells in numerous areas. This review sheds light on the concept of iPSC-derived definitive HSPCs, setting a milestone for artificial blood production in the near future

    The Cytotoxic Effect Of Rna-guided Endonuclease Cas9on Human Hematopoietic Stem And Progenitor Cells (hspcs)

    No full text
    241S225S22619th Annual Meeting of the American-Society-of-Gene-and-Cell-Therapy (ASGCT)MAY 04-07, 2016Washington, D

    Novel Dual Channel SiGe/Strain-Silicon FinHEMT for High-Performance and Low-Power Application

    No full text

    Device optimization on gate oxide and spacer dielectric permittivity for 'well-tempered' nanoscale MOSFET

    No full text
    We propose a new optimized design strategy by considering the correlated effects of high-?? gate oxide and spacer dielectric on GIDL and DIBL in nanoscale MOSFET. By investigating the transition of GIDL mechanism from vertical to lateral in 32 nm nMOS with abrupt and high drain extension doping, the lateral GIDL is suppressed by 10-4 with high-?? spacer (e.g. TiO2). DIBL is also suppressed below 100 mV/V by taking relatively lower-?? gate oxide (e.g. HfO2) than high-?? spacer
    corecore