45 research outputs found

    Stationarity of SLE

    Full text link
    A new method to study a stopped hull of SLE(kappa,rho) is presented. In this approach, the law of the conformal map associated to the hull is invariant under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur

    Virasoro Module Structure of Local Martingales of SLE Variants

    Full text link
    Martingales often play an important role in computations with Schramm-Loewner evolutions (SLEs). The purpose of this article is to provide a straightforward approach to the Virasoro module structure of the space of local martingales for variants of SLEs. In the case of ordinary chordal SLE, it has been shown in Bauer & Bernard: Phys.Lett.B 557 that polynomial local martingales form a Virasoro module. We will show for more general variants that the module of local martingales has a natural submodule M that has the same interpretation as the module of polynomial local martingales of chordal SLE, but it is in many cases easy to find more local martingales than that. We discuss the surprisingly rich structure of the Virasoro module M and construction of the ``SLE state'' or ``martingale generating function'' by Coulomb gas formalism. In addition, Coulomb gas or Feigin-Fuchs integrals will be shown to transparently produce candidates for multiple SLE pure geometries.Comment: 48 pages, 3 figures. v4: Completely reorganized, with new results, erroneous corollary 4 (in v3) correcte

    Abelian Sandpile Model on the Honeycomb Lattice

    Full text link
    We check the universality properties of the two-dimensional Abelian sandpile model by computing some of its properties on the honeycomb lattice. Exact expressions for unit height correlation functions in presence of boundaries and for different boundary conditions are derived. Also, we study the statistics of the boundaries of avalanche waves by using the theory of SLE and suggest that these curves are conformally invariant and described by SLE2.Comment: 24 pages, 5 figure

    Machine Learning of Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS

    Get PDF
    Publisher Copyright: ©2021 American Association for Cancer Research.In myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN), bone marrow (BM) histopathology is assessed to identify dysplastic cellular morphology, cellularity, and blast excess. Yet, other morphologic findings may elude the human eye. We used convolutional neural networks to extract morphologic features from 236 MDS, 87 MDS/MPN, and 11 control BM biopsies. These features predicted genetic and cytogenetic aberrations, prognosis, age, and gender in multivariate regression models. Highest prediction accuracy was found for TET2 [area under the receiver operating curve (AUROC) = 0.94] and spliceosome mutations (0.89) and chromosome 7 monosomy (0.89). Mutation prediction probability correlated with variant allele frequency and number of affected genes per pathway, demonstrating the algorithms' ability to identify relevant morphologic patterns. By converting regression models to texture and cellular composition, we reproduced the classical del(5q) MDS morphology consisting of hypolobulated megakaryocytes. In summary, this study highlights the potential of linking deep BM histopathology with genetics and clinical variables. SIGNIFICANCE: Histopathology is elementary in the diagnostics of patients with MDS, but its high-dimensional data are underused. By elucidating the association of morphologic features with clinical variables and molecular genetics, this study highlights the vast potential of convolutional neural networks in understanding MDS pathology and how genetics is reflected in BM morphology.See related commentary by Elemento, p. 195.Peer reviewe

    Lattice fusion rules and logarithmic operator product expansions

    Full text link
    The interest in Logarithmic Conformal Field Theories (LCFTs) has been growing over the last few years thanks to recent developments coming from various approaches. A particularly fruitful point of view consists in considering lattice models as regularizations for such quantum field theories. The indecomposability then encountered in the representation theory of the corresponding finite-dimensional associative algebras exactly mimics the Virasoro indecomposable modules expected to arise in the continuum limit. In this paper, we study in detail the so-called Temperley-Lieb (TL) fusion functor introduced in physics by Read and Saleur [Nucl. Phys. B 777, 316 (2007)]. Using quantum group results, we provide rigorous calculations of the fusion of various TL modules. Our results are illustrated by many explicit examples relevant for physics. We discuss how indecomposability arises in the "lattice" fusion and compare the mechanisms involved with similar observations in the corresponding field theory. We also discuss the physical meaning of our lattice fusion rules in terms of indecomposable operator-product expansions of quantum fields.Comment: 54pp, many comments adde

    Somatic mutations and T-cell clonality in patients with immunodeficiency

    Get PDF
    Common variable immunodeficiency (CVID) and other late-onset immunodeficiencies often co-manifest with autoimmunity and lymphoproliferation. The pathogenesis of most cases is elusive, as only a minor subset harbors known monogenic germline causes. The involvement of both B and T cells is, however, implicated. To study whether somatic mutations in CD4(+) and CD8(+) T cells associate with immunodeficiency, we recruited 17 patients and 21 healthy controls. Eight patients had late-onset CVID and nine patients other immunodeficiency and/or severe autoimmunity. In total, autoimmunity occurred in 94% and lymphoproliferation in 65%. We performed deep sequencing of 2,533 immune-associated genes from CD4(+) and CD8(+) cells. Deep T-cell receptor b-sequencing was used to characterize CD4(+) and CD8(+) T-cell receptor repertoires. The prevalence of somatic mutations was 65% in all immunodeficiency patients, 75% in CVID, and 48% in controls. Clonal hematopoiesis-associated variants in both CD4(+)and CD8(+) cells occurred in 24% of immunodeficiency patients. Results demonstrated mutations in known tumor suppressors, oncogenes, and genes that are critical for immuneand proliferative functions, such as STAT5B (2 patients), C5AR1 (2 patients), KRAS (one patient), and NOD2 (one patient). Additionally, as a marker of T-cell receptor repertoire perturbation, CVID patients harbored increased frequencies of clones with identical complementarity determining region 3 sequences despite unique nucleotide sequences when compared to controls. In conclusion, somatic mutations in genes implicated for autoimmunity and lymphoproliferation are common in CD4(+) and CD8(+) cells of patients with immunodeficiency. They may contribute to immune dysregulation in a subset of immunodeficiency patients.Peer reviewe

    Toward industry 4.0: Efficient and sustainable manufacturing leveraging MAESTRI total efficiency framework

    Get PDF
    © Springer International Publishing AG 2017.This paper presents an overview of the work under development within MAESTRI EU-funded collaborative project. The MAESTRI Total Efficiency Framework (MTEF) aims to advance the sustainability of manufacturing and process industries by providing a management system in the form of a flexible and scalable platform and methodology. The MTEF is based on four pillars: (a) an effective management system targeted at process continuous improvement; (b) Efficiency assessment tools to support improvements, optimisation strategies and decision support; (c) Industrial Symbiosis paradigm to gain value from waste and energy exchange; (d) an Internet-of-Things infrastructure to support easy integration and data exchange among shop-floor, business systems and tools

    Fusion rules and boundary conditions in the c=0 triplet model

    Full text link
    The logarithmic triplet model W_2,3 at c=0 is studied. In particular, we determine the fusion rules of the irreducible representations from first principles, and show that there exists a finite set of representations, including all irreducible representations, that closes under fusion. With the help of these results we then investigate the possible boundary conditions of the W_2,3 theory. Unlike the familiar Cardy case where there is a consistent boundary condition for every representation of the chiral algebra, we find that for W_2,3 only a subset of representations gives rise to consistent boundary conditions. These then have boundary spectra with non-degenerate two-point correlators.Comment: 50 pages; v2: changed formulation in section 1.2.1 and corrected typos, version to appear in J. Phys.

    Associative algebraic approach to logarithmic CFT in the bulk: the continuum limit of the gl(1|1) periodic spin chain, Howe duality and the interchiral algebra

    Full text link
    We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed gl(11)gl(1|1) spin-chain and its continuum limit - the c=2c=-2 symplectic fermions theory - and rely on two technical companion papers, "Continuum limit and symmetries of the periodic gl(1|1) spin chain" [Nucl. Phys. B 871 (2013) 245-288] and "Bimodule structure in the periodic gl(1|1) spin chain" [Nucl. Phys. B 871 (2013) 289-329]. Our main result is that the algebra of local Hamiltonians, the Jones-Temperley-Lieb algebra JTL_N, goes over in the continuum limit to a bigger algebra than the product of the left and right Virasoro algebras. This algebra, S - which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field S(z,zˉ)=Sabψa(z)ψˉb(zˉ)S(z,\bar{z})=S_{ab}\psi^a(z)\bar{\psi}^b(\bar{z}), with a symmetric form SabS_{ab} and conformal weights (1,1). We discuss in details how the Hilbert space of the LCFT decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL_N in the gl(11)gl(1|1) spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of sp(N2)sp(N-2). The semi-simple part of JTL_N is represented by Usp(N2)Usp(N-2), providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL image represented in the spin-chain. On the continuum side, simple modules over the interchiral algebra S are identified with "fundamental" representations of sp()sp(\infty).Comment: 69 pp., 10 figs, v2: the paper has been substantially modified - new proofs, new refs, new App C with inductive limits construction, et

    KRAS-G12C Mutation in One Real-Life and Three Population-Based Nordic Cohorts of Metastatic Colorectal Cancer

    Get PDF
    Background: KRAS mutations, present in over 40% of metastatic colorectal cancer (mCRC), are negative predictive factors for anti-EGFR therapy. Mutations in KRAS-G12C have a cysteine residue for which drugs have been developed. Published data on this specific mutation are conflicting; thus, we studied the frequency and clinical characteristics in a real-world and population-based setting.Methods: Patients from three Nordic population-based cohorts and the real-life RAXO-study were combined. RAS and BRAF tests were performed in routine healthcare, except for one cohort. The dataset consisted of 2,559 patients, of which 1,871 could be accurately classified as KRAS, NRAS, and BRAF-V600E. Demographics, treatments, and outcomes were compared using logistic regression. Overall survival (OS) was estimated with Kaplan-Meier, and differences were compared using Cox regression, adjusted for baseline factors.Results: The KRAS-G12C frequency was 2%-4% of all tested in the seven cohorts (mean 3%) and 4%-8% of KRAS mutated tumors in the cohorts (mean 7%). Metastasectomies and ablations were performed more often (38% vs. 28%, p = 0.040), and bevacizumab was added more often (any line 74% vs. 59%, p = 0.007) for patients with KRAS-G12C- vs. other KRAS-mutated tumors, whereas chemotherapy was given to similar proportions. OS did not differ according to KRAS mutation, neither overall (adjusted hazard ratio (HR) 1.03; 95% CI 0.74-1.42, reference KRAS-G12C) nor within treatment groups defined as "systemic chemotherapy, alone or with biologics", "metastasectomy and/or ablations", or "best supportive care", RAS and BRAF wild-type tumors (n = 548) differed similarly to KRAS-G12C, as to other KRAS- or NRAS-mutated (n = 66) tumors.Conclusions: In these real-life and population-based cohorts, there were no significant differences in patient characteristics and outcomes between patients with KRAS-G12C tumors and those with other KRAS mutations. This contrasts with the results of most previous studies claiming differences in many aspects, often with worse outcomes for those with a KRAS-G12C mutation, although not consistent. When specific drugs are developed, as for this mutation, differences in outcome will hopefully emerge.ill hopefully emerge.</p
    corecore