13 research outputs found

    Synthesis, molecular docking studies, and larvicidal activity evaluation of new fluorinated neonicotinoids against Anopheles darlingi larvae

    Get PDF
    Anopheles darlingi is the main vector of malaria in Brazil, characterized by a high level of anthropophilia and endophagy. Imidacloprid, thiacloprid, and acetamiprid are the most widespread insecticides of the neonicotinoid group. However, they produce adverse effects on the non-target insects. Flupyradifurone has been marketed as an alternative to non-fluorinated neonicotinoids. Neonicotinoids containing trifluoroacethyl substituent reveal increased insecticidal activity due to higher hydrophobicity and metabolic stability. We synthesized novel neonicotinoid insecticides containing fluorinated acceptor groups and their interactions were estimated with the nicotinic acetylcholine receptor (nAChR) binding site by molecular docking studies, to evaluate their larvicidal activity against A. darlingi, and to assess their outdoor photodegradation behavior. New neonicotinoid analogues were prepared and characterized by NMR and mass-spectrometry. The synthesized molecules were modelled by time-dependent density functional theory and analyzed, their interaction with nAChR was investigated by molecular docking. Their insecticide activity was tested on Anopheles larvae collected in suburban area of Manaus, Brazil. Four new fluorinated neonicotinoid analogs were prepared and tested against 3rd instars larvae of A. darlingi showing high larvicidal activity. Docking studies reveal binding modes of the synthesized compounds and suggest that their insecticidal potency is governed by specific interactions with the receptor binding site and enhanced lipophilicity. 2-Chloro-5-(2-trifluoromethyl-pyrrolidin-1-ylmethyl)pyridine 5 showed fast degradation in water maintaining high larvicidal activity. All obtained substances possessed high larvicidal activity in low concentrations in 48 hours of exposure, compared to commercial flupyradifurone. Such activity is connected to a unique binding pattern of the synthesized compounds to insect’s nAChR and to their enhanced bioavailability owing to introduction of fluorinated amino-moieties. Therefore, the compounds in question have a high potential for application as control agents for insects transmitting tropical diseases, and they will be less persistent in the environment.Peer reviewe

    New 2,3-Benzodiazepine Derivative: Synthesis, Activity on Central Nervous System, and Toxicity Study in Mice

    Get PDF
    We report the design and synthesis of a new diazepine derivative, 4-(4-methoxyphenyl)-2,3,4,5-tetrahydro-2,3-benzodiazepin-1-one (VBZ102), and the evaluation of its anxiolytic-like profile, memory impairment effect, and toxicity in Swiss mice. VBZ102 was evaluated for central nervous system effects in an open field, light–dark box, and novel object recognition tests under oral administration for acute and sub-acute treatment. We tested the VBZ102 toxicity in mice through a determination of LD50 values and examination of the biochemical and histopathological parameters. The VBZ102 induced an anxiolytic effect at different doses both in the light–dark box and open field tests. Unlike other benzodiazepines (e.g., bromazepam), a sedative effect was noted only after administration of the VBZ102 at 10.0 mg/kg

    Stable Carbenes as Structural Components of Partially Saturated Sulfur-Containing Heterocycles

    Get PDF
    Recently, an unusual elongation of the C-S bond was observed experimentally for some sulfur-containing heterocycles. Using a superior ab initio (SCS-MP2/cc-pVTZ) level of theory, we showed that the phenomenon can be explained by a contribution of a donor–acceptor adduct of a carbene with an unsaturated ligand. One may achieve further elongation of the C-S bond, eventually turning it to a coordinate one, by increasing the stability of each part of the system as, e.g., in the utmost case of spiro adducts with Arduengo carbenes. The effect of carbene stability was quantified by employing the isodesmic reactions of carbene exchange

    Stable Carbenes as Structural Components of Partially Saturated Sulfur-Containing Heterocycles

    Get PDF
    Recently, an unusual elongation of the C-S bond was observed experimentally for some sulfur-containing heterocycles. Using a superior ab initio (SCS-MP2/cc-pVTZ) level of theory, we showed that the phenomenon can be explained by a contribution of a donor–acceptor adduct of a carbene with an unsaturated ligand. One may achieve further elongation of the C-S bond, eventually turning it to a coordinate one, by increasing the stability of each part of the system as, e.g., in the utmost case of spiro adducts with Arduengo carbenes. The effect of carbene stability was quantified by employing the isodesmic reactions of carbene exchange

    Stable Carbenes as Structural Components of Partially Saturated Sulfur-Containing Heterocycles

    Get PDF
    Recently, an unusual elongation of the C-S bond was observed experimentally for some sulfur-containing heterocycles. Using a superior ab initio (SCS-MP2/cc-pVTZ) level of theory, we showed that the phenomenon can be explained by a contribution of a donor-acceptor adduct of a carbene with an unsaturated ligand. One may achieve further elongation of the C-S bond, eventually turning it to a coordinate one, by increasing the stability of each part of the system as, e.g., in the utmost case of spiro adducts with Arduengo carbenes. The effect of carbene stability was quantified by employing the isodesmic reactions of carbene exchange.Peer reviewe

    Antileukemic Activity and Molecular Docking Study of a Polyphenolic Extract from Coriander Seeds

    Get PDF
    Leukemia is a group of hematological neoplastic disorders linked to high mortality rates worldwide, but increasing resistance has led to the therapeutic failure of conventional chemotherapy. This study aimed to evaluate in vitro the antileukemic activity and potential mechanism of action of a polyphenolic extract obtained from the seeds of Coriandrum sativum L. (CSP). A methylthiazoletetrazolium assay was performed to assess the CSP cytotoxicity on chronic (K562) and acute (HL60) myeloid leukemia cell lines and on normal Vero cell line. CSP toxicity was also evaluated in vivo using the OECD 423 acute toxicity model on Swiss albino mice. The results demonstrated a remarkable antitumoral activity against K562 and HL60 cell lines (IC50 = 16.86 µM and 11.75 µM, respectively) although no cytotoxicity was observed for the Vero cells or mice. A silico study was performed on the following receptors that are highly implicated in the development of leukemia: ABL kinase, ABL1, BCL2, and FLT3. The molecular docking demonstrated a high affinity interaction between the principal CSP components and the receptors. Our findings demonstrated that CSP extract has remarkable antileukemic activity, which is mainly mediated by the flavonoids, catechins, and rutin, all of which showed the highest binding affinity for the targeted receptors. This study revealed a promising active compound alternative research-oriented biopharmacists to explore

    In Vitro and In Silico Evaluation of Cholinesterase Inhibition by Alkaloids Obtained from Branches of Abuta panurensis Eichler

    Get PDF
    Alkaloids are natural products known as ethnobotanicals that have attracted increasing attention due to a wide range of their pharmacological properties. In this study, cholinesterase inhibitors were obtained from branches of Abuta panurensis Eichler (Menispermaceae), an endemic species from the Amazonian rainforest. Five alkaloids were isolated, and their structure was elucidated by a combination of 1D and 2D H-1 and C-13 NMR spectroscopy, HPLC-MS, and high-resolution MS: Lindoldhamine isomer m/z 569.2674 (1), stepharine m/z 298.1461 (2), palmatine m/z 352.1616 (3), 5-N-methylmaytenine m/z 420.2669 (4) and the N-trans-feruloyltyramine m/z 314.1404 (5). The compounds 1, 3, and 5 were isolated from A. panurensis for the first time. Interaction of the above-mentioned alkaloids with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes was investigated in silico by molecular docking and molecular dynamics. The molecules under investigation were able to bind effectively with the active sites of the AChE and BChE enzymes. The compounds 1-4 demonstrated in vitro an inhibitory effect on acetylcholinesterase with IC50 values in the range of 19.55 mu M to 61.24 mu M. The data obtained in silico corroborate the results of AChE enzyme inhibition.Peer reviewe

    In-Vivo Antidiabetic Activity and In-Silico Mode of Action of LC/MS-MS Identified Flavonoids in Oleaster Leaves

    Get PDF
    Background: Olea europea L. subsp. europaea var. sylvestris (Mill) Lehr (Oleaster) is a wild endemic olive tree indigenous to the Mediterranean region. Olea europea leaves represent a natural reservoir of bioactive molecules that can be used for therapeutic purposes. Aim of the study: This work was conducted to study antidiabetic and antihyperglycemic activities of flavonoids from oleaster leaves using alloxan-induced diabetic mice. The mode of action of flavonoids against eight receptors that have a high impact on diabetes management and complication was also investigated using molecular docking. Results: During 28 days of mice treatment with doses 25 and 50 mg/kg b.w, the studied flavonoids managed a severe diabetic state

    In Vitro and In Silico Evaluation of Cholinesterase Inhibition by Alkaloids Obtained from Branches of Abuta panurensis Eichler

    Get PDF
    Alkaloids are natural products known as ethnobotanicals that have attracted increasing attention due to a wide range of their pharmacological properties. In this study, cholinesterase inhibitors were obtained from branches of Abuta panurensis Eichler (Menispermaceae), an endemic species from the Amazonian rainforest. Five alkaloids were isolated, and their structure was elucidated by a combination of 1D and 2D 1H and 13C NMR spectroscopy, HPLC-MS, and high-resolution MS: Lindoldhamine isomer m/z 569.2674 (1), stepharine m/z 298.1461 (2), palmatine m/z 352.1616 (3), 5-N-methylmaytenine m/z 420.2669 (4) and the N-trans-feruloyltyramine m/z 314.1404 (5). The compounds 1, 3, and 5 were isolated from A. panurensis for the first time. Interaction of the above-mentioned alkaloids with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes was investigated in silico by molecular docking and molecular dynamics. The molecules under investigation were able to bind effectively with the active sites of the AChE and BChE enzymes. The compounds 1–4 demonstrated in vitro an inhibitory effect on acetylcholinesterase with IC50 values in the range of 19.55 µM to 61.24 µM. The data obtained in silico corroborate the results of AChE enzyme inhibition
    corecore