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Abstract: Recently, an unusual elongation of the C-S bond was observed experimentally for some
sulfur-containing heterocycles. Using a superior ab initio (SCS-MP2/cc-pVTZ) level of theory, we
showed that the phenomenon can be explained by a contribution of a donor–acceptor adduct of a
carbene with an unsaturated ligand. One may achieve further elongation of the C-S bond, eventually
turning it to a coordinate one, by increasing the stability of each part of the system as, e.g., in the
utmost case of spiro adducts with Arduengo carbenes. The effect of carbene stability was quantified
by employing the isodesmic reactions of carbene exchange.

Keywords: stable carbenes; ab initio calculations; thiadiazolines; bond elongation

1. Introduction

Sulfur-containing ring systems comprise an important part of the molecules used
in medicinal chemistry. They are listed among the top 100 most commonly used hetero-
cyclic moieties in drug molecules [1,2]. Thiadiazole rings can be found in some antibiotics,
such as a sulfonamide sulfamethizole (currently discontinued) and cephalosporin-class
antibiotic cefazolin [3], which have entered the World Health Organization’s List of Essen-
tial Medicines [4]. Methazolamide [4] and acetazolamide [5] are two carbonic anhydrase
inhibitors, containing thiadiazoline and the thiadiazole system, respectively (Figure 1).
Moreover, compounds containing the thiadiazole moiety are actively explored as prospec-
tive pharmaceutically active ingredients. Additionally, antileishmanial activity was recently
demonstrated for quinoline-, thiophene-, and pyrazolo-substituted 1,3,4-thiadiazoles [6–8].
Therefore, the research on the preparation, structural characterization, and functional
properties of sulfur-containing heterocycles is essential for medicinal chemistry.
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1. Introduction 
Sulfur-containing ring systems comprise an important part of the molecules used in 

medicinal chemistry. They are listed among the top 100 most commonly used heterocyclic 
moieties in drug molecules [1,2]. Thiadiazole rings can be found in some antibiotics, such 
as a sulfonamide sulfamethizole (currently discontinued) and cephalosporin-class antibi-
otic cefazolin [3], which have entered the World Health Organization’s List of Essential 
Medicines [4]. Methazolamide [4] and acetazolamide [5] are two carbonic anhydrase in-
hibitors, containing thiadiazoline and the thiadiazole system, respectively (Figure 1). 
Moreover, compounds containing the thiadiazole moiety are actively explored as pro-
spective pharmaceutically active ingredients. Additionally, antileishmanial activity was 
recently demonstrated for quinoline-, thiophene-, and pyrazolo-substituted 1,3,4-thiadia-
zoles [6–8]. Therefore, the research on the preparation, structural characterization, and 
functional properties of sulfur-containing heterocycles is essential for medicinal chemis-
try. 
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Figure 1. Thiadiazole-containing drugs.
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Recently, we noticed a significant elongation of the C-S bond [9,10], with respect to
the standard value of about 1.83 Å [11], when analyzing X-ray and theoretical data for
a series of thiadiazolines in the presence of π-donor R1(R2) substituent(s) at the carbon
atom (Figure 2A). We explained this phenomenon as the result of the high stability of
amino-substituted carbenes as structural components of thiadiazoline heterocycles, i.e., the
contribution of donor–acceptor adducts (Figure 2B) to the structure of the amino derivatives
of thiazolines involving a stable carbene R1-C(:)-R2. The form B can be considered to be an
adduct, where the nitrogen atom forms a covalent bond with carbon and the negatively
charged sulfur atom donates to a formally vacant carbon p-orbital. In this case, the binding
strength depends on the stability of both carbene and thiamine ligand.
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the introduction of an acceptor trifluoromethyl group (1d, 1.852 Å and 1.882 Å) does not 
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In this study, we investigate the C-S bond elongation phenomenon in the broad series
of model compounds using quantum chemical ab initio (SCS-MP2/cc-pVTZ) calculations.
This theoretical approach is known for a very good level of approximation, which is much
better than the classical MP2 method and comparable with much more sophisticated
CCSD(T) approach, a “gold standard” for calculations of organic structures [12–15].

2. Results and Discussion
2.1. Quantum Chemical Modeling of Sulfur-Containing Heterocycles

Simple symmetrical 2H-1,3-dithioles were used as starting compounds. The calcula-
tions carried out for structures 1a–g (Figure 3) demonstrated a significant dependence of the
C-S bond lengths on the nature of substituents in the position 2 (see Table 1 and Figure 4).
For instance, the C-S distance of 1.821 Å in dimethyl-substituted derivative 1a (Figure 3) is
only slightly smaller than the C-S bond length in the tetrahydrothiophene determined in
the gas phase (1.839 Å) [11]. This fact is in a good agreement with the low thermodynamic
stability of dimethylcarbene Ме-C(:)-Ме. In contrast, the insertion of a dimethylamino
group donor lengthens the C-S bond noticeably: the optimized structure 1b (Figure 3)
shows two different C-S bond lengths of 1.852 Å and 1.887 Å. It is well known that highly
electronegative and π-electron donor amino groups stabilize the carbenes existing in the
singlet ground state [16]. The addition of another dimethylamino group in the position 2
(Figure 3, 1c) causes further elongation of the C-S bonds to 1.893 Å, while the introduction
of an acceptor trifluoromethyl group (1d, 1.852 Å and 1.882 Å) does not noticeably affect
the lengths of C-S bonds when compared to 1b. This observation is in agreement with simi-
lar stability of the 2-methyl-2-amino- and 2-trifluoromethyl-2-amino-substituted carbenes
discussed recently [16].
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Table 1. Main structure parameters of optimized structures 1–6 (see Figure 4 for designations).

Structure l(S-C), Å l(C′-S), Å l(C-X), Å θ, Degrees

1a 1.821 1.779 1.544 19.4, −19.4
1b 1.852, 1.887 1.752 1.444 (C-N), 1.532 (C-C) 15.8, −13.5
1c 1.893 1.747 1.446 8.0, −5.0
1d 1.852, 1.882 1.750, 1.751 1.439 (C-N), 1.552 (C-C) 12.2, −8.9
1e 1.823 1.763 1.087, 1.088 19.3, −19.3
1f 1.822 1.755 1.779, 1.808 19.4, −19.4
1g 1.826 1.750 1.353, 1.357 7.9, −7.9
1h 1.882, 1.891 1.757, 1.773 1.445, 1.447 15.0, −12.4
1i 1.897, 1.919 1.728, 1.744 1.426, 1.435 14.8, −12.6
1j 1.903, 1.903 1.752, 1.752 1.436, 1.438 13.8, −11.7
1k 1.886, 1.890 1.755, 1.761 1.444, 1.447 13.2, −13.2
1l 1.898, 1.907 1.727, 1.744 1.437, 1.439 9.5, -8.1

1m 1.897, 1.899 1.750, 1.751 1.439, 1.442 11.6, −8.8
2a 1.897, 1.467 (C-N) 1.765, 1.400 (C-N) 1.452 (C-N), 1.527 (C-C) 15.9, −9.9
2b 1.898, 1.467 (C-N) 1.761, 1.398 (C-N) 1.450, 1.459 11.3, −5.4
2c 1.906, 1.462 (C-N) 1.760, 1.383 (C-N) 1.447, 1.457 6.0, −12.6
3a 1.908, 1.446 (C-O) 1.755, 1.366 (C-O) 1.434, 1.437 0.5, −2.8
3b 1.905, 1.442 (C-O) 1.756, 1.372 (C-O) 1.435, 1.439 0.4, −2.5
4a 1.846, 1.479 (C-N) 1.764, 1.401 (N-N) 1.522, 1.529 15.6, −28.5
4b 1.888, 1.474 (C-N) 1.756, 1.391 (N-N) 1.444 (C-N), 1.527 (C-C) 22.8, −11.6
4c 1.898, 1.475 (C-N) 1.751, 1.384 (N-N) 1.438, 1.458 7.5, −20.0
4d 1.853, 1.470 (C-N) 1.756, 1.391 (N-N) 1.446 (C-N), 1.551 (C-C) −0.5, −8.0
4e 1.847, 1.482 (C-N) 1.760, 1.396 (N-N) 1.523, 1.532 27.7, −16.1
4f 1.888, 1.471 (C-N) 1.755, 1.382 (N-N) 1.444 (C-N), 1.529 (C-C) 22.9, −12.7
4g 1.902, 1.474 (C-N) 1.749, 1.370 (N-N) 1.441, 1.451 9.4, −20.0
4h 1.858, 1.465 (C-N) 1.754, 1.380 (N-N) 1.459 (C-N), 1.559 (C-C) 0.8, −5.8
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Table 1. Cont.

Structure l(S-C), Å l(C′-S), Å l(C-X), Å θ, Degrees

5a 1.829, 1.476 (C-N) 1.761(S-N), 1.368 (N-N) 1.525, 1.531 14.8, −24.3
5b 1.857, 1.466 (C-N) 1.752(S-N), 1.358 (N-N) 1.450 (C-N), 1.530 (C-C) 20.1, −12.9
5c 1.868, 1.471 (C-N) 1.739(S-N), 1.346 (N-N) 1.447, 1.451 8.0, −15.7
6a 2.272, 1.425 (C-N) 1.763, 1.414 (C-N) 1.409, 1.413 5.0, −13.2
6b 1.990, 1.440 (C-N) 1.758, 1.396 (C-N) 1.429, 1.436 9.0, −16.7
6c 2.064, 1.445 (C-N) 1.740(S-N), 1.395 (N-N) 1.408, 1.412 25.6, −11.3
6d 2.045, 1.445 (C-N) 1.740(S-N), 1.389 (N-N) 1.412, 1.418 25.2, −11.6
6e 1.919, 1.448 (C-N) 1.739(S-N), 1.356 (N-N) 1.437, 1.439 8.4, −16.8
6f 2.034, 1.409 (C-O) 1.750, 1.376 (C-O) 1.411, 1.411 0.0, 0.0
6g 2.155, 1.817 1.737, 1.755 1.399, 1.401 12.4, −14.7
8a 1.890, 1.467 (C-N) 1.760(C-S), 1.401 (C-N) 1.448, 1.450 14.1, −9.2
8b 1.886, 1.457 (C-O) 1.756(C-S), 1.353 (C-O) 1.425, 1.431 4.6, −6.0
8c 1.885, 1.891 1.747, 1.747 1.432, 1.438 7.6, −12.7
8d 1.894, 1.472 (C-N) 1.748(C-S), 1.388 (N-N) 1.448, 1.450 18.8, −9.5
8e 1.895, 1.472 (C-N) 1.747(C-S), 1.380 (N-N) 1.436, 1.443 20.6, −11.3
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4e 1.847, 1.482 (C-N) 1.760, 1.396 (N-N) 1.523, 1.532 27.7, −16.1 
4f 1.888, 1.471 (C-N) 1.755, 1.382 (N-N) 1.444 (C-N), 1.529 (C-C) 22.9, −12.7 
4g 1.902, 1.474 (C-N) 1.749, 1.370 (N-N) 1.441, 1.451 9.4, −20.0 
4h 1.858, 1.465 (C-N) 1.754, 1.380 (N-N) 1.459 (C-N), 1.559 (C-C) 0.8, −5.8 
5a 1.829, 1.476 (C-N) 1.761(S-N), 1.368 (N-N) 1.525, 1.531 14.8, −24.3 
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6g 2.155, 1.817 1.737, 1.755 1.399, 1.401 12.4, −14.7 
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Figure 4. Main structural parameters of optimized structures 1–6 (Table 1).

The short C-S bond in the parent structure 1e (1.823 Å) conforms to the low stability
of triplet methylene. The replacement of the hydrogen atoms by fluorine or chlorine had
almost no effect on the C-S bond lengths (1.826 Å and 1.822 Å, respectively).

In contrast, the replacement of sulfur with a more electronegative heteroatom makes
the C-S bond significantly longer. In particular, if a nitrogen atom replaces sulfur (Figure 3,
compounds 2a,b), the C-S bond lengths reach 1.897 and 1.898 Å, respectively; the insertion
of oxygen (3a) elongates the bond even further (1.908 Å). Obviously, stronger covalent
bonding with nitrogen or oxygen weakens the bond with the remaining sulfur atom. When
the methyl group is attached to the endocyclic nitrogen (2c), the C-S bond length increases
to 1.906 Å (Table 1). On the contrary, the insertion of methyl group at the C=C double bond
(3b) does not noticeably affect the C-S bond length (1.908 Å in 3a vs. 1.905 Å in 3b).

The structures 4a–h (Figure 3) model the experimentally synthesized thiadiazolines [10,11],
whereas the structures 5a–c are produced by a substitution of the sp2-hybridized carbons
by nitrogen atoms. The behavior of the C-S bond within the sub-series 4a–d and 4e–h are
similar to the trend discussed above for 1a–d; however, bond lengthening is slightly more
pronounced in the series 4 (d(C-S) 1.898 Å and 1.902 Å for 4c and 4g, respectively). Obvi-
ously, the substitution at the nitrogen molecule does not have any notable effect. Further
increase in the number of nitrogen molecules in the heterocycle (Figure 3, 5a–c) leads to a
shortening of the C-S bond, which reaches a value of 1.868 Å in 5c. The replacement of one
dimethylamino group with the methyl one (5b) further shortens the C-S bond to 1.857 Å,
and this bond is even shorter for the dimethyl-substituted derivative 5a (d(C-S) 1.829 Å).

In order to study the effect of substitution at the C=C double bond in 2H-1,3-dithioles,
we decided to modify the 2,2-bis(dimethylamino)-substituted structure (1c), for which the
longest C-S bonds (1.893 Å) were predicted by quantum chemical calculations. Along with
the carbene stabilization (Figure 2), the dithione moiety can also be stabilized owing to a
specific substitution, leading to the additional elongation of the C-S bond. In the compound
1h (Figure 5) with two π-donor -NH2 groups, the C-S bond length values reach 1.882 Å and
1.891 Å, and thus differ only slightly from the values predicted for the 1c.
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Two polar forms of the compound 6g (bottom right).

For the sake of comparison, the structure 1i with two nitro groups has the longest
C-S bonds among the compounds under investigation (1.897 Å and 1.919 Å). A difluoro-
substituted derivative 1j also demonstrates elongated C-S bonds with identical lengths
(1.903 Å). Evidently, the electronegative fluorine atoms and acceptor nitro groups attached
to the C=C double bond increase the lengths of C-S bonds and affect the donor–acceptor
character of the whole molecule through the additional stabilization of an isolated dithione
molecule. Predictably, a mono-substitution at the C=C double bond (1k–m) makes the C-S
bonds nonequivalent.

Thus, the substitution in sulfur-containing heterocycles significantly affects the C-S
bond’s lengths. The range of observed changes is approximately 0.13 Å and substantially
depends on the nature and position of the substituents.

2.2. Arduengo Carbene-Based Thioheterocycles

Arduengo carbenes are the most thermodynamically stable representatives of the class.
Thus, we expected a further elongation of the C-S bond in spiro derivatives 6a–g (Figure 5).
A geometrical optimization of the model structures justified our expectations. The values of
the C-S bond lengths obtained for series 6 (1.92–2.16 Å) exceed significantly those inherent
to other heterocycles discussed in the previous section. Unlike the dithiole 1c, where both
carbon–sulfur bonds were equally elongated, two different types of the C-S bonds were
found in the compound 6g (Figure 5): the covalent bond (1.817 Å) and the coordinate
one (2.155 Å). Thus, the 6g may be best described by the equilibrium structures shown
in Figure 5, where the formed imidazolium cation is effectively stabilized by the donor
influence of two nitrogen and one sulfur atom, as well as by an additional donation from
the coordinated sulfur atom (6g-B).

The same applies to the remaining members of the series: the covalent bond is formed
with a more electronegative atom (N or O), while sulfur is responsible for the coordinate
one. At first sight, the most electronegative atom (oxygen or nitrogen) must carry the
negative charge, and not sulfur. However, the formed C-N (or C-O) bond is probably
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much more favored than the C-S one. A qualitatively similar trend for the C-S bond
elongation depending on the nature of the carbene moiety was observed for two series
of model linear structures R1(R2)CHSH (9) and R1(R2)CHSC(R3)=CH(R4) (10) (see ESI,
Supplementary Figures S1 and Table S2). Within the series, poor correlations exist between
the calculated C-S distances and total NBO charges located on carbene atoms (see ESI, and
Supplementary Figure S2). Obviously, in line with the growing singlet carbene stabilization,
their nucleophilicity and hence, the ability of delocalization of positive charge increase and
the C-S bond lengthens.

Interestingly, the C-N bond lengths were almost identical throughout the series 6a–g
(1.42–1.45 Å), whereas the corresponding C-S bonds differed significantly from 1.82 Å (6g)
to 2.27 Å (6a). The value obtained for 6c (2.064 Å) was close to those calculated for 6f
and 6g (2.034 and 2.155 Å, respectively; see Table 1). Obviously, a conjugation of one of
the two lone electron pairs at the chalcogen atom with the formally vacant p-orbital of
the imidazolium cation would be less dependent on structural distortions and, hence, be
more efficient.

2.3. Isodesmic Reactions of the Heterocycles with a Carbene Molecule

If the C-S bond length is determined by the stability of the corresponding carbene, then
a hypothetical substitution reaction of carbenes in the thioheterocycles 1–5 with the more
stable carbene 7d would be either an endothermic (positive ∆H values) or an endergonic
process (positive ∆G values). For this purpose, quantum chemical calculations were carried
out for the carbenes 7a–c (Figure 6), and their electronic structure is well described within
the single-determinant approximation [16].
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The ∆H and ∆G values for the first two reactions (Table 2, items 1 and 2) are negative,
indicating a stronger binding of the less stable and more reactive trifluoromethyl amino
carbene 7b and difluorocarbene 7c, which replace more thermodynamically stable Alder
carbene 7a [16]. In contrast, a substitution of the 7a by the most stable Arduengo carbene
7d (items 3–9), was less favorable thermodynamically and provided positive values of both
∆H and ∆G. Those results are in a good agreement with the weak C-S covalent bonding
predicted for the heterocycles 6a,g.

Interestingly, the proposed theoretical model reproduces well the relative stability
in the series of persistent carbenes: the Alder carbene vs. saturated and unsaturated
Arduengo carbenes. The endothermic (endergonic) effects for the corresponding reactions
(Table 2, items 10–14) were only approximately one-half of those found for the reactions
with unsaturated Arduengo carbene (Table 2, items 3–9). Therefore, the relative stability
of carbenes increases in the series 7d > 7e > 7a. Structures 8a–e (Figure 6) based on the
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saturated carbene 7e demonstrate intermediate C-S bond lengthening comparable to those
found for the species involving the less stable Alder carbene (~1.89 Å, Table 1).

Table 2. Enthalpy change (∆H) and Gibbs free energy (∆G) values in kcal/mol for isodesmic reactions
(items 1–14).

Item Reaction ∆H ∆G

1 1c + 7b→ 1d + 7a –5.2 (–3.3)
2 1c + 7c→ 1g + 7a –8.8 –10.0
3 2b + 7d→ 6a + 7a 23.2 22.2
4 2c + 7d→ 6b + 7a 20.6 19.8
5 4c + 7d→ 6c + 7a 21.8 20.7
6 4g + 7d→ 6d + 7a 19.6 18.6
7 5c + 7d→ 6e + 7a 22.3 21.3
8 3a + 7d→ 6f + 7a 26.8 25.1
9 1c + 7d→ 6g + 7a 24.2 22.6

10 2b + 7e→ 8a + 7a 8.9 9.1
11 4c + 7e→ 8b + 7a 8.4 8.5
12 4g + 7e→ 8c + 7a 7.1 7.2
13 3a + 7e→ 8d + 7a 11.1 11.2
14 1c + 7e→ 8e + 7a 9.8 10.1

3. Materials and Methods

All calculations were carried out using the TURBOMOLE program package (version
6.4 and 7.5) [17,18]. Geometrical optimization and the calculation of the ∆E, ∆H, and ∆G
values were performed using SCS-MP2 level of approximation [12,19–21] with triple-ζ
cc-pVTZ Dunning’s basis sets [22]. Resolution of the Identity (RI) approximation [23,24]
was utilized in all cases to increase calculation speed and efficiency. The main structure
parameters are given in Table 1. All energy values and Cartesian coordinates for the
optimized structures are presented in the Supplementary Materials.

Vibration frequencies and corrections for calculation of relative energies and relative
Gibbs free energies were derived numerically at the SCS-MP2/cc-pVTZ level of theory.
All the optimized structures corresponded to local energy minima, and no imaginary
frequencies were detected by the vibration analysis. In order to derive ∆E magnitudes
(Supplementary Table S1), the corresponding corrections on vibrations at 0 K (ZPE) were
added to the total energy values. For relative enthalpy change (∆H) and Gibbs free energy
values (∆G), the corresponding corrections for total energy values were calculated under
standard conditions (pressure 0.1 Pa, temperature 298.15 K) and scaled at 0.95.

NBO charge calculations were carried out at the SCS-MP2/cc-pVTZ level of ap-
proximation using the optimized geometries and the NBO procedure [25–27] imple-mented
into the TURBOMOLE program.

The Jmol [28,29] program was used for the graphical presentation of the structures.

4. Conclusions

A series of sulfur-containing heterocyclic compounds were studied using quantum
chemical calculations at the ab initio (RI-SCS-MP2/cc-pVTZ) level of approximation. A
noticeable elongation of the C-S bond was observed in the cases of stable carbenes (Alder or
Arduengo carbenes). The phenomenon is also affected by the nature of other heteroatoms
in the molecules and the substitution character. Both experimentally observed and theoreti-
cally predicted elongations of the C-S bonds in the heterocycles under investigation were
in a good agreement with the representation of the molecules as donor–acceptor complexes
of carbenes with ligands (Figure 2B). On one hand, the longest C-S bonds were found for
Arduengo carbene derivatives, and in the frontier cases, the covalent bond transformed into
a weak coordinate bonding. On the other hand, the presence of substituents stabilizing the
isolated dithione moiety (a second counterpart of the imaginary donor–acceptor complex)
contributed to further elongation of the C-S bonds.
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Supplementary Materials: The following information is available online: Table S1: Total energy
values (E), zero-point energy correction (ZPE), and thermal correction to enthalpy (TCE) and Gibbs
free energy (TCGFE), corrected energy values (E + ZPE, E + TCE, and E + TCGFE, a.u.), and the
lowest vibration frequency for compounds of 1–8 (RI-SCS-MP2/cc-pVTZ); computational data for
model structures 9 and 10; description of computational methods; Figure S1: Model linear structures
9 and 10; Figure S2: Dependence of C-S bond lengths in model compounds 9a–g and 10a–o (a), 9a–g
(b), and 10a–o (c); Table S2: Bond lengths and total NBO charges on carbene moieties for compounds
9a–g and 10a–o. Linear approximations and coefficients of determination are indicated for each plot;
Cartesian coordinates for the equilibrium structures 1–8 (RI-SCS-MP2/cc-pVTZ).
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2,3-Dihydro-1,3,4-Thiadiazole Derivatives via [3+2]-Cycloadditions of Tertiary Thioamides with Nitrile Imines Derived from
Trifluoroacetonitrile. J. Fluor. Chem. 2021, 242, 109702. [CrossRef]

11. Handbook of Chemistry and Physic, 84th ed.; Lide, D.R. (Ed.) CRC Press: Boca Raton, FL, USA, 2003.
12. Grimme, S. Improved Second-Order Møller–Plesset Perturbation Theory by Separate Scaling of Parallel- and Antiparallel-Spin

Pair Correlation Energies. J. Chem. Phys. 2003, 118, 9095–9102. [CrossRef]

http://doi.org/10.1021/jm4017625
http://www.ncbi.nlm.nih.gov/pubmed/24471928
http://doi.org/10.1021/jm501100b
http://www.ncbi.nlm.nih.gov/pubmed/25255204
http://doi.org/10.3389/fphar.2020.591570
http://www.ncbi.nlm.nih.gov/pubmed/33117181
http://doi.org/10.1016/j.bioorg.2018.12.025
http://www.ncbi.nlm.nih.gov/pubmed/30605884
http://doi.org/10.22037/ijpr.2019.14547.12476
http://www.ncbi.nlm.nih.gov/pubmed/32184848
http://doi.org/10.1007/s10593-018-2199-9
http://doi.org/10.1016/j.jfluchem.2020.109702
http://doi.org/10.1063/1.1569242


Molecules 2022, 27, 1458 9 of 9

13. Fink, R.F. Spin-Component-Scaled Møller-Plesset (SCS-MP) Perturbation Theory: A Generalization of the MP Approach with
Improved Properties. J. Chem. Phys. 2010, 133, 174113. [CrossRef]
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