94 research outputs found

    Effects of overstory tree density, site preparation, and ground vegetation on natural Scots pine seedling emergence and survival in northern boreal pine forests

    Get PDF
    Natural regeneration is a commonly used forest regeneration method in northern Finland. It is not known, however, what would be the optimal overstory density and ground vegetation composition for seedling emergence and survival, and if site preparation is needed to accompany overstory density manipulation. We studied the effects of overstory density (unthinned control and thinning to 50,150, and 250 trees.ha(-1)) and ground vegetation removal (mechanical site preparation with disc trenching) on the number of naturally germinated pine seedlings and survival of individual seedlings over a period of 8 to 11 years. Bare mineral soil was a superior seedbed compared to intact vegetation cover, even though the mortality rate was high on mineral soil. Greater cover of lingonberry, crowberry, and slash had a negative effect on seedling number. Seedling mortality was initially high (60% died during the first 2 years) but decreased throughout the first 5 years. The survival rate of seedlings located in the mineral soil of the upper part of the disc trencher track was twice as high as that of seedlings located in the lower part of the track. High coverage of hair mosses (Polytrichum spp.) was associated with poorer seedling survival. An overstory density of 50-150 trees.ha(-1) with site preparation seems to be an efficient treatment to promote regeneration under these circumstances

    Effects of overstory tree density, site preparation, and ground vegetation on natural Scots pine seedling emergence and survival in northern boreal pine forests

    Get PDF
    Natural regeneration is a commonly used forest regeneration method in northern Finland. It is not known, however, what would be the optimal overstory density and ground vegetation composition for seedling emergence and survival, and if site preparation is needed to accompany overstory density manipulation. We studied the effects of overstory density (unthinned control and thinning to 50,150, and 250 trees.ha(-1)) and ground vegetation removal (mechanical site preparation with disc trenching) on the number of naturally germinated pine seedlings and survival of individual seedlings over a period of 8 to 11 years. Bare mineral soil was a superior seedbed compared to intact vegetation cover, even though the mortality rate was high on mineral soil. Greater cover of lingonberry, crowberry, and slash had a negative effect on seedling number. Seedling mortality was initially high (60% died during the first 2 years) but decreased throughout the first 5 years. The survival rate of seedlings located in the mineral soil of the upper part of the disc trencher track was twice as high as that of seedlings located in the lower part of the track. High coverage of hair mosses (Polytrichum spp.) was associated with poorer seedling survival. An overstory density of 50-150 trees.ha(-1) with site preparation seems to be an efficient treatment to promote regeneration under these circumstances.Peer reviewe

    Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    Get PDF
    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex

    Simulations of column-averaged CO_2 and CH_4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate

    Get PDF
    We have developed an improved version of the National Institute for Environmental Studies (NIES) three-dimensional chemical transport model (TM) designed for accurate tracer transport simulations in the stratosphere, using a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly around the tropopause. The air-ascending rate was derived from the effective heating rate and was used to simulate vertical motion in the isentropic part of the grid (above level 350 K), which was adjusted to fit to the observed age of the air in the stratosphere. Multi-annual simulations were conducted using the NIES TM to evaluate vertical profiles and dry-air column-averaged mole fractions of CO_2 and CH_4. Comparisons with balloon-borne observations over Sanriku (Japan) in 2000–2007 revealed that the tracer transport simulations in the upper troposphere and lower stratosphere are performed with accuracies of ~5% for CH_4 and SF_6, and ~1% for CO_2 compared with the observed volume-mixing ratios. The simulated column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO_2) and methane (XCH_4) were evaluated against daily ground-based high-resolution Fourier Transform Spectrometer (FTS) observations measured at twelve sites of the Total Carbon Column Observing Network (TCCON) (Bialystok, Bremen, Darwin, Garmisch, Izaña, Lamont, Lauder, Orleans, Park Falls, Sodankylä, Tsukuba, and Wollongong) between January 2009 and January 2011. The comparison shows the model's ability to reproduce the site-dependent seasonal cycles as observed by TCCON, with correlation coefficients typically on the order 0.8–0.9 and 0.4–0.8 for XCO_2 and XCH_4, respectively, and mean model biases of ±0.2% and ±0.5%, excluding Sodankylä, where strong biases are found. The ability of the model to capture the tracer total column mole fractions is strongly dependent on the model's ability to reproduce seasonal variations in tracer concentrations in the planetary boundary layer (PBL). We found a marked difference in the model's ability to reproduce near-surface concentrations at sites located some distance from multiple emission sources and where high emissions play a notable role in the tracer's budget. Comparisons with aircraft observations over Surgut (West Siberia), in an area with high emissions of methane from wetlands, show contrasting model performance in the PBL and in the free troposphere. Thus, the PBL is another critical region for simulating the tracer total column mole fractions

    Polar startospheric cloud observation at sodankyla (SF)

    Get PDF
    We present some preliminary results of MOANA (Measurements and modelling of Ozone and Aerosols in the Northern Atmosphere) multi-wavelength lidar system, which was operating at Sodankyla (SF) during SESAME. We observed various polar stratospheric cloud (PSC) episodes; in this work we report the measurements of January 12 (JI2) and January 19 (J19), 1995. The J12 PSC has a layered structure and two of the three particle layers show a depolarised backscattering signal. On the other hand the J19 PSC detected between 19 and 24km is likely composed of spherical (liquid) particles because no depolarization shows up. In the last case an analysis of the lidar backscattering at the different wavelengths allows to estimate the optical size distribution of the particles.PublishedSchliersee, Germany1.8. Osservazioni di geofisica ambientaleope

    Lidar observations of liquid and solid PSC at Sodankyla

    Get PDF
    Polar stratospheric clouds (PSC) play a major role in the process of Artic and Antartic ozone depletion due to the surface provided for heterogeneus chemical reactions and the removal of NO2 from the gas phase. Therefore the phase, size and composition of PSC's should be known. The microphysical structure of the PSC's depends on the actual temperature and the corresponding; airmass thermal history. At temperatures below the ice frostpoint, PSC's of ice particles (Type II) are observed, while PSC's seen at temperatures above the frostpoint are classified as PSC Type Ia (anisotropic particles) and PSC Ib (spherical particles). PSC I were believed to consist of nitric acid trihydrate (NA'r). NAT should be stable some degrees above the ice frostpoint with a particle shape depending on the cooling rate [Toon et al., 1990]. However, the explanation of PSC based solely on the NAT-hypothesis can not explain a large amount of data [Toon and Tolbert, 1995]. The spherical shape of PSC Ib can be explained with a liquid supercooled ternary solution (STS) consisting of H2O, HNO3 and H2SO4. Scenarios for the formation of frozen background aerosol (sulfuric acid tetrahydrate, SAT) are now investigated. The described variance in shape and size of the PSC can be sensed by multispectral 2-polarization lidar, measuring range resolved scattering properties of atmospheric aerosols. Here the lidar observations of PSC's during the SESAME campaign are compared to the critical formation temperatures of the different PSC types.PublishedSchliersee, Germany1.8. Osservazioni di geofisica ambientaleope

    Microlayers of solid particles observed by lidar at Sodankyla during SESAME

    Get PDF
    The physical condition of polar stratospheric aerosols is of great importance both for the modelling of surface chemistry reactions and for the understanding of particle production and evaporation in the polar vortex. The particles can be either liquid, supercooled liquids or solid material at different heights and temperatures. Since a solid particle can survive much longer when temperature rises above the freezing point, whereas liquid particles will evaporate quickly at temperatures above the condensation temperature, the knowledge of the physical state is an important parameter to estimate the contribution to heterogenous chemistry of the different aerosol types observed.SubmittedSchliersee, Germany1.8. Osservazioni di geofisica ambientaleope
    • …
    corecore