13 research outputs found

    Accelerating Drug Discovery Efforts for Trypanosomatidic Infections Using an Integrated Transnational Academic Drug Discovery Platform

    Get PDF
    According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion\u2013toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 (TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain

    Solid-Phase Synthesis of Optically Active Substituted 2 Aminofuranones Using an Activated Carbonate Linker

    No full text
    An efficient three-step solid-phase synthesis of diverse 3,5-disubstituted-2-aminofuranones has been developed. α-Hydroxy acids loaded on a nitrophenyl carbonate derivative of Wang resin are used as acylating agents for the C-acylation of active methylene compounds and the resulting intermediates provided, through a cyclative cleavage reaction, the desired product

    Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius

    No full text
    Marine biofouling is an epibiotic biological process that affects almost any kind of submerged surface, causing globally significant economic problems mainly for the shipping industry and aquaculture companies, and its prevention so far has been associated with adverse environmental effects for non-target organisms. Previously, we have identified bromosphaerol (1), a brominated diterpene isolated from the red alga Sphaerococcus coronopifolius, as a promising agent with significant antifouling activity, exerting strong anti-settlement activity against larvae of Amphibalanus (Balanus) amphitrite and very low toxicity. The significant antifouling activity and low toxicity of bromosphaerol (1) motivated us to explore its chemistry, aiming to optimize its antifouling potential through the preparation of a number of analogs. Following different synthetic routes, we successfully synthesized 15 structural analogs (2–16) of bromosphaerol (1), decorated with different functional groups. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of the bromosphaerol derivatives were evaluated using cyprids and nauplii of the cirriped crustacean A. amphitrite as a model organism. Derivatives 2, 4, and 6–16 showed diverse levels of antifouling activity. Among them, compounds 9 and 13 can be considered as well-performing antifoulants, exerting their activity through a non-toxic mechanism

    Development and Biological Characterization of a Novel Selective TrkA Agonist with Neuroprotective Properties against Amyloid Toxicity

    No full text
    Neurotrophins are growth factors that exert important neuroprotective effects by preventing neuronal death and synaptic loss. Nerve Growth Factor (NGF) acts through the activation of its high-affinity, pro-survival TrkA and low-affinity, pro-apoptotic p75NTR receptors. NGF has been shown to slow or prevent neurodegenerative signals in Alzheimer’s Disease (AD) progression. However, its low bioavailability and its blood–brain-barrier impermeability limit the use of NGF as a potential therapeutic agent against AD. Based on our previous findings on synthetic dehydroepiandrosterone derivatives, we identified a novel NGF mimetic, named ENT-A013, which selectively activates TrkA and exerts neuroprotective, anti-amyloid-β actions. We now report the chemical synthesis, in silico modelling, metabolic stability, CYP-mediated reaction phenotyping and biological characterization of ENT-A013 under physiological and neurodegenerative conditions. We show that ENT-A013 selectively activates the TrkA receptor and its downstream kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death. Moreover, ENT-A013 promotes survival of primary Dorsal Root Ganglion (DRG) neurons upon NGF withdrawal and protects hippocampal neurons against Amyloid β-induced apoptosis and synaptic loss. Furthermore, this neurotrophin mimetic partially restores LTP impairment. In conclusion, ENT-A013 represents a promising new lead molecule for developing therapeutics against neurodegenerative disorders, such as Alzheimer’s Disease, selectively targeting TrkA-mediated pro-survival signals

    Data_Sheet_1_A quest for the stereo-electronic requirements for selective agonism for the neurotrophin receptors TrkA and TrkB in 17-spirocyclic-dehydroepiandrosterone derivatives.docx

    No full text
    IntroductionThe neurotrophin system plays a pivotal role in the development, morphology, and survival of the nervous system, and its dysregulation has been manifested in numerous neurodegenerative and neuroinflammatory diseases. Neurotrophins NGF and BDNF are major growth factors that prevent neuronal death and synaptic loss through binding with high affinity to their specific tropomyosin-related kinase receptors namely, TrkA and TrkB, respectively. The poor pharmacokinetic properties prohibit the use of neurotrophins as therapeutic agents. Our group has previously synthesized BNN27, a prototype small molecule based on dehydroepiandrosterone, mimicking NGF through the activation of the TrkA receptor.MethodsTo obtain a better understanding of the stereo-electronic requirements for selective activation of TrkA and TrkB receptors, 27 new dehydroepiandrosterone derivatives bearing a C17-spiro-dihydropyran or cyclobutyl moiety were synthesized. The new compounds were evaluated for their ability (a) to selectively activate the TrkA receptor and its downstream signaling kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death, and (b) to induce phosphorylation of TrkB and to promote cell survival under serum deprivation conditions in NIH3T3 cells stable transfected with the TrkB receptor and primary cortical astrocytes. In addition the metabolic stability and CYP-mediated reaction was assessed.ResultsAmong the novel derivatives, six were able to selectively protect PC12 cells through interaction with the TrkA receptor and five more to selectively protect TrkB-expressing cells via interaction with the TrkB receptor. In particular, compound ENT-A025 strongly induces TrkA and Erk1/2 phosphorylation, comparable to NGF, and can protect PC12 cells against serum deprivation-induced cell death. Furthermore, ENT-A065, ENT-A066, ENT-A068, ENT-A069, and ENT-A070 showed promising pro-survival effects in the PC12 cell line. Concerning TrkB agonists, ENT-A009 and ENT-A055 were able to induce phosphorylation of TrkB and reduce cell death levels in NIH3T3-TrkB cells. In addition, ENT-A076, ENT-A087, and ENT-A088 possessed antiapoptotic activity in NIH-3T3-TrkB cells exclusively mediated through the TrkB receptor. The metabolic stability and CYP-mediated reaction phenotyping of the potent analogs did not reveal any major liabilities.DiscussionWe have identified small molecule selective agonists of TrkA and TrkB receptors as promising lead neurotrophin mimetics for the development of potential therapeutics against neurodegenerative conditions.</p

    Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids.

    Get PDF
    International audienceBACKGROUND:The search for novel chemical entities targeting essential and parasite-specific pathways is considered a priority for neglected diseases such as trypanosomiasis and leishmaniasis. The thiol-dependent redox metabolism of trypanosomatids relies on bis-glutathionylspermidine [trypanothione, T(SH)2], a low molecular mass cosubstrate absent in the host. In pathogenic trypanosomatids, a single enzyme, trypanothione synthetase (TryS), catalyzes trypanothione biosynthesis, which is indispensable for parasite survival. Thus, TryS qualifies as an attractive drug target candidate.METHODOLOGY/PRINCIPAL FINDING:A library composed of 144 compounds from 7 different families and several singletons was screened against TryS from three major pathogen species (Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum). The screening conditions were adjusted to the TryS´ kinetic parameters and intracellular concentration of substrates corresponding to each trypanosomatid species, and/or to avoid assay interference. The screening assay yielded suitable Z' and signal to noise values (≥0.85 and ~3.5, respectively), and high intra-assay reproducibility. Several novel chemical scaffolds were identified as low μM and selective tri-tryp TryS inhibitors. Compounds displaying multi-TryS inhibition (N,N'-bis(3,4-substituted-benzyl) diamine derivatives) and an N5-substituted paullone (MOL2008) halted the proliferation of infective Trypanosoma brucei (EC50 in the nM range) and Leishmania infantum promastigotes (EC50 = 12 μM), respectively. A bis-benzyl diamine derivative and MOL2008 depleted intracellular trypanothione in treated parasites, which confirmed the on-target activity of these compounds.CONCLUSIONS/SIGNIFICANCE:Novel molecular scaffolds with on-target mode of action were identified as hit candidates for TryS inhibition. Due to the remarkable species-specificity exhibited by tri-tryp TryS towards the compounds, future optimization and screening campaigns should aim at designing and detecting, respectively, more potent and broad-range TryS inhibitors

    Structure of compounds affecting tritryp trypanothione synthetase activity.

    No full text
    <p><b>AI (P)</b>, 4,5-dihydroazepino[4,5-<i>b</i>]indol-2(1<i>H</i>,3<i>H</i>,6<i>H</i>)-one derivatives, paullones derivatives, (FS-554 and MOL2008), five APPDA, 6-arylpyrido[2,3-<i>d</i>]pyrimidine-2,7-diamine derivatives (ZEA10, ZEA35, ZEA40, ZEA41 and ZVR159), eight BDA, <i>N</i>,<i>N'</i>-bis(3,4-substituted-benzyl) diamine derivatives (EAP1-47, EAP1-63, APC1-67, APC1-87, APC1-89, APC1-99, APC1-101 and APC1-111), seven BBHPP, 1-(benzo[<i>d</i>]thiazol-2-yl)-4-benzoyl-3-hydroxy-5-phenyl-1<i>H</i>-pyrrol-2(5<i>H</i>)-one derivatives (AD81, AD84, ADMRC158, ADKPN160, ADKPN161, ADKPN164 and ADKPN165), three BZ, benzofuroxan derivatives (J18, J20 and J31) and one PD, 1<i>H</i>-purine-2,6(3<i>H</i>,7<i>H</i>)-dione derivatives [(<i>Z</i>)-8-(2-(2,4-dihydroxybenzylidene)hydrazinyl)-7-(2-hydroxy-3-phenoxy propyl)-1,3-dimethyl-1<i>H</i>-purine-2,6(3<i>H</i>,7<i>H</i>)-dione, TC227]. iPr, tBu, OBn, Mo and Ph, correspond to an isopropyl, tert-butyl, O-benzyl, 4 -morpholinyl and phenyl substitution, respectively.</p

    Trypanothione dependent redox metabolism.

    No full text
    <p>The chemical structure of trypanothione (<i>N</i><sup>1</sup>,<i>N</i><sup>8</sup>-bis(glutathionyl)spermidine; T(SH)<sub>2</sub>) is depicted at the center. Synthesis: trypanothione synthetase catalyzes the ligation of two molecules of gluthatione to one of spermidine using the energy provided by two ATP molecules. Regeneration: trypanothione reductase maintains trypanothione in the reduced state at expenses of NADPH, which can be supplied by the oxidative phase of the pentose phosphate pathway <i>via</i> glucose 6-phosphate dehydrogenase. Utilization: reduced trypanothione is involved in multiple functions such as the detoxification of xenobiotics, cell proliferation, defense against oxidants and protein thiol-redox homeostasis. The multipurpose oxidoreductase tryparedoxin plays an important role catalyzing electron transfer from T(SH)<sub>2</sub> to different molecular targets (e.g. peroxidases, ribonucleotide reductase and protein disulfides). G6P: glucose-6-phosphate, 6PGL: 6-phosphogluconolactone, T(SH)<sub>2</sub>: reduced trypanothione, TS<sub>2[ox]</sub>: oxidized trypanothione, NDPs: nucleosides diphosphate, dNDP: deoxinucleosides diphosphate, E<sup>-</sup>: electrophilic species, TS-E: trypanothione-electrophile adduct, ROOH: hydroperoxide, ONOOH: peroxynitrite, NO<sub>2</sub><sup>-</sup>: nitrite.</p

    Inhibition plot of <i>Leishmania infantum</i> trypanothione synthetase (TryS) by paullones.

    No full text
    <p>The data are presented as mean TryS activity (%) ± 2 S.D. (n = 4) as function of Log<sub>10</sub> concentration (nM) of compound adjusted to a four-parameter Boltzmann sigmoidal equation. Representative dose-response plot obtained for MOL2008 (IC<sub>50</sub> = 0.14 ± 0.03 μM; slope plot 0.38 ± 0.03) and for FS-554 (IC<sub>50</sub> = 0.32 ± 0.73 μM; slope plot 0.37 ± 0.03).</p
    corecore