301 research outputs found

    Toward an Evaluation Model of User Experiences on Virtual Reality Indoor Bikes

    Get PDF
    This paper deals with deriving a model or framework to evaluate user experiences (UX) of virtual reality (VR) systems, especially, VR indoor bikes which are under construction. Recently, VR is one of the most appealing areas attracting people’s interests around the world. Many products armed with it increasingly emerge on the market, and it is expected that the use of VR systems will continue to increase sharply in the future. However, UX of such products cannot be evaluated appropriately at the moment due to a lack of proper evaluation models. In a broad sense, UX that may stem from human machine interface in ergonomics covers affect, usability, and user value in spite of some differences in definition among the researchers. While evaluations of UX on the products without VR have been overall justifiably performed, UX has been evaluated neither systematically nor strictly on the products with VR. Through the analyses of expert reviews, we newly identify an additional component and its elements, and modify some elements of the three existing components for evaluating UX on the VR systems. As a result, we propose a comprehensive evaluation model of UX, which consists of four factors: usability, affect, user value, and presence feeling. In addition, we determine the components and their elements for specific VR indoor bikes similarly through the analyses of expert surveys and focus-group discussions, which results in developing a questionnaire for users. Finally, along with the questionnaire, we propose a specific evaluation model for VR indoor bikes

    A case of diabetic ketoacidosis with posterior cerebral artery territory ischemic stroke mimicking uncal herniation

    Get PDF
    In diabetic ketoacidosis, hyperglycemia and ketosis result in cerebral vasculitis, which can cause cerebral edema and thrombosis. A previously healthy, 12-year-old girl visited the emergency department with a history of vomiting, polydipsia, polyuria, decreased mentality, and a 7 kg (12%) weight loss within 1 week. She showed laboratory features of severe diabetic ketoacidosis, stuporous mentality, respiratory failure, and unilateral fixed mydriasis with contralateral hemiparesis. However, brain magnetic resonance imaging showed multifocal ischemic stroke mainly involving the left posterior cerebral artery territory, instead of uncal herniation. This case highlights the possible occurrence of ischemic stroke in children with early-stage diabetes mellitus

    Salinomycin enhances doxorubicin-induced cytotoxicity in multidrug resistant MCF-7/MDR human breast cancer cells via decreased efflux of doxorubicin

    Get PDF
    Salinomycin is a monocarboxylic polyether antibiotic, which is widely used as an anticoccidial agent. The anticancer property of salinomycin has been recognized and is based on its ability to induce apoptosis in human multidrug resistance (MDR). The present study investigated whether salinomycin reverses MDR towards chemotherapeutic agents in doxorubicin-resistant MCF-7/MDR human breast cancer cells. The results demonstrated that doxorubicin-mediated cytotoxicity was significantly enhanced by salinomycin in the MCF-7/MDR cells, and this occurred in a dose-dependent manner. This finding was consistent with subsequent observations made under a confocal microscope, in which the doxorubicin fluorescence signals of the salinomycin-treated cells were higher compared with the cells treated with doxorubicin alone. In addition, flow cytometric analysis revealed that salinomycin significantly increased the net cellular uptake and decreased the efflux of doxorubicin. The expression levels of MDR-1 and MRP-1 were not altered at either the mRNA or protein levels in the cells treated with salinomycin. These results indicated that salinomycin was mediated by its ability to increase the uptake and decrease the efflux of doxorubicin in MCF-7/MDR cells. Salinomycin reversed the resistance of doxorubicin, suggesting that chemotherapy in combination with salinomycin may benefit MDR cancer therapyopen

    An MTCMOS design methodology and its application to mobile computing

    Get PDF

    Evaluation of kidney size in children: a pilot study of renal length as a surrogate of organ growth

    Get PDF
    PurposeSomatic growth is an important indicator of health in children. Adequate organ growth is essential in growth and directly related to body growth. We consider renal length as a surrogate of organ growth in growing children. Measurement of weight, height, and many anthropometric indices, such as body surface area (BSA), body mass index (BMI), and Rohrer and Kaup indices, are used to evaluate growth status. The aim of this study was to evaluate the association between renal length and somatic parameters and analyze the affecting factors for renal size during growth.MethodsThe data for renal length in 66 children (age, 12.9±15.6 months; male/female, 34/32) were obtained. Each kidney was measured with ultrasonography and dimercaptosuccinic acid scan. The data on age, sex, height, and weight were obtained from the medical records. BSA, BMI, and Rohrer and Kaup indices were calculated from measured height and weight. BSA was calculated by 2 methods, and is expressed as BSA I and BSA II.ResultsThere were significant correlations between renal size and age, weight, height, BSA I, BSA II, and Rohrer index. In the regression analysis, the most significant contributing factor to renal growth was height (R2=0.636, P<0.001).ConclusionHeight seems to be the most important factor associated with organ growth in growing children. Further studies to evaluate adequate organ growth should be carried out

    Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells

    Get PDF
    Recently, the interplay between autophagy and apoptosis has become an important factor in chemotherapy for cancer treatment. Inhibition of autophagy may be an effective strategy to improve the treatment of chemo-resistant cancer by consistent exposure to chemotherapeutic drugs. However, no reports have clearly elucidated the underlying mechanisms. Therefore, in this study, we assessed whether salinomycin, a promising anticancer drug, induces apoptosis and elucidated potential antitumor mechanisms in chemo-resistant prostate cancer cells. Cell viability assay, Western blot, annexin V/propidium iodide assay, acridine orange (AO) staining, caspase-3 activity assay, reactive oxygen species (ROS) production, and mitochondrial membrane potential were assayed. Our data showed that salinomycin alters the sensitivity of prostate cancer cells to autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the salinomycin-induced apoptosis. Notably, salinomycin decreased phosphorylated of AKT and phosphorylated mammalian target of rapamycin (mTOR) in prostate cancer cells. Pretreatment with LY294002, an autophagy and PI3K inhibitor, enhanced the salinomycin-induced apoptosis by decreasing the AKT and mTOR activities and suppressing autophagy. However, pretreatment with PD98059 and SB203580, an extracellular signal-regulated kinases (ERK), and p38 inhibitors, suppressed the salinomycin-induced autophagy by reversing the upregulation of ERK and p38. In addition, pretreatment with N-acetyl-L-cysteine (NAC), an antioxidant, inhibited salinomycin-induced autophagy by suppressing ROS production. Our results suggested that salinomycin induces apoptosis, which was related to ROS-mediated autophagy through regulation of the PI3K/AKT/mTOR and ERK/p38 MAPK signaling pathways
    corecore