127 research outputs found

    Accumulation and Clearance of Perfluorooctanoic Acid (PFOA) in Current and Former Residents of an Exposed Community

    Get PDF
    BackgroundPerfluorooctanoic acid (PFOA) is a perfluoroalkyl acid found in > 99% of Americans. Its health effects are unknown. Prior estimates of serum half-life range from 2.3 to 3.8 years.ObjectivesWe assessed the impact of years of residence and years since residing in the study area on serum PFOA concentration in a sample of current and former residents who were exposed to PFOA emissions from an industrial facility in six water districts in West Virginia and Ohio.MethodsSerum samples and questionnaires, including residential history, were collected in 2005-2006. We modeled log serum PFOA (nanograms per milliliter) for current residents as a function of years of residence in a water district, adjusted for a variety of factors. We modeled the half-life in former residents who lived in two water districts with high exposure levels using a two-segment log-linear spline.ResultsWe modeled serum PFOA concentration in 17,516 current residents as a function of years of residence (R2 = 0.68). Years of residence was significantly associated with PFOA concentration (1% increase in serum PFOA/year of residence), with significant heterogeneity by water district. Half-life was estimated in two water districts comprising a total of 1,573 individuals. For the participants included in our analyses, we found that years since residing in a water district was significantly associated with serum PFOA, which yielded half-lives of 2.9 and 8.5 years for water districts with higher and lower exposure levels, respectively.ConclusionYears of residence in an exposed water district is positively associated with observed serum PFOA in 2005-2006. Differences in serum clearance rate between low- and high-exposure water districts suggest a possible concentration-dependent or time-dependent clearance process or inadequate adjustment for background exposures

    Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with Uric Acid among Adults with Elevated Community Exposure to PFOA

    Get PDF
    Background Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are compounds that do not occur in nature, have been widely used since World War II, and persist indefinitely in most environments. Median serum levels in the United States are 4 ng/mL for PFOA and 21 ng/mL for PFOS. PFOA has been associated with elevated uric acid in two studies of chemical workers. Uric acid is a risk factor for hypertension and possibly other cardiovascular outcomes. Methods We conducted a cross-sectional study of PFOA and PFOS and uric acid among 54,951 adult community residents in Ohio and West Virginia, who lived or worked in six water districts contaminated with PFOA from a chemical plant. Analyses were conducted by linear and logistic regression, adjusted for confounders. Results Both PFOA and PFOS were significantly associated with uric acid. An increase of 0.2–0.3 mg/dL uric acid was associated with an increase from the lowest to highest decile of either PFOA or PFOS. Hyperuricemia risk increased modestly with increasing PFOA; the odds ratios by quintile of PFOA were 1.00, 1.33 [95% confidence interval (CI), 1.24–1.43], 1.35 (95% CI, 1.26–1.45), 1.47 (95% CI, 1.37–1.58), and 1.47 (95% CI, 1.37–1.58; test for trend, p \u3c 0.0001). We saw a less steep trend for PFOS. Inclusion of both correlated fluorocarbons in the model indicated PFOA was a more important predictor than was PFOS. Conclusion Higher serum levels of PFOA were associated with a higher prevalence of hyperuricemia, but the limitations of cross-sectional data and the possibility of noncausal mechanisms prohibit conclusions regarding causality

    Dialkyl phosphate metabolites of organophosphorus in applicators of agricultural pesticides in Majes – Arequipa (Peru)

    Get PDF
    BACKGROUND: Organophosphorus (OPs) pesticides are the most commonly used pesticides in Peruvian agriculture. The population at risk for OPs exposure includes formulators, applicators and farmers. Majes Valley is the most important agricultural center of the Southern region of Peru. The present study was aimed to determine the knowledge about using OPs, safety practice and urinary dialkylphosphate metabolites on OP applicators in the Majes Valley, Peru. METHODS: This study was based on a questionnaire which included socio-demographic characteristics, knowledge of safety practices to handling OPs, characteristics of pesticide application and use of protective measures to avoid pesticide contamination. Exposure was assessed by measuring six urinary OP metabolites (DMP, DMTP, DMDTP, DEP, DETP, and DEDTP) by gas chromatography using a single flame photometric detector. The sample consisted of 31 men and 2 women aged 20 – 65 years old. RESULTS: 76% of applicators had at least one urinary dialkylphosphate metabolite above the limit of detection. The geometric mean (GM) and the geometric standard deviation (GSD) of DMP and DEP were 5.73 ug/g cr. (GSD 2.51), and 6.08 ug/g cr. (GSD 3.63), respectively. The percentage of applicators with detectable DMP, DMDTP, and DMTP in urine was 72.72%, 3.03%, and 15.15%, respectively, while the corresponding figures for DEP, DETP, and DEDTP were 48.48%, 36.36% and 15.15%, respectively. There was no significant association between the use of protection practices and the absence of urine OPs metabolites suggesting inadequate protection practices. CONCLUSION: The pesticide applicators in Majes Valley have significant exposure to OP pesticides, probably due to inappropriate protective practices. Future work should evaluate possible health effects

    Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)

    Get PDF
    UNLABELLED: OBJECTIVE AND SOURCES: We reviewed the epidemiologic literature for PFOA. DATA SYNTHESIS: Perfluorooctanoic acid (PFOA) does not occur naturally but is present in the serum of most residents of industrialized countries (U.S. median, 4 ng/mL). Drinking water is the primary route of exposure in some populations, but exposure sources are not well understood. PFOA has been used to manufacture such products as Gore-Tex and Teflon. PFOA does not break down in the environment; the human half-life is estimated at about 3 years. PFOA is not metabolized in the body; it is not lipophilic. PFOA is not directly genotoxic; animal data indicate that it can cause several types of tumors and neonatal death and may have toxic effects on the immune, liver, and endocrine systems. Data on the human health effects of PFOA are sparse. There is relatively consistent evidence of modest positive associations with cholesterol and uric acid, although the magnitude of the cholesterol effect is inconsistent across different exposure levels. There is some but much less consistent evidence of a modest positive correlation with liver enzymes. Most findings come from cross-sectional studies, limiting conclusions. Two occupational cohort studies do not provide consistent evidence for chronic disease; both are limited by sample size and reliance on mortality data. Reproductive data have increased recently but are inconsistent, and any observed adverse effects are modest. CONCLUSIONS: Epidemiologic evidence remains limited, and to date data are insufficient to draw firm conclusions regarding the role of PFOA for any of the diseases of concern

    Dioxin Revisited: Developments Since the 1997 IARC Classification of Dioxin as a Human Carcinogen

    Get PDF
    In 1997 the International Agency for Research on Cancer (IARC) classified 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD; the most potent dioxin congener) as a group 1 carcinogen based on limited evidence in humans, sufficient evidence in experimental animals, and extensive mechanistic information indicating that TCDD acts through a mechanism involving the aryl hydrocarbon receptor (AhR), which is present in both humans and animals. The judgment of limited evidence in humans was based primarily on an elevation of all cancers combined in four industrial cohorts. The group 1 classification has been somewhat controversial and has been challenged in the literature in recent years. In this article we review the epidemiologic and mechanistic evidence that has emerged since 1997. New epidemiologic evidence consists primarily of positive exposure–response analyses in several of the industrial cohorts, as well as evidence of excesses of several specific cancers in the Seveso accident cohort. There are also new data regarding how the AhR functions in mediating the carcinogenic response to TCDD. The new evidence generally supports the 1997 IARC classification

    Retrospective Exposure Estimation and Predicted versus Observed Serum Perfluorooctanoic Acid Concentrations for Participants in the C8 Health Project

    Get PDF
    Background: People living or working in eastern Ohio and western West Virginia have been exposed to perfluorooctanoic acid (PFOA) released by DuPont Washington Works facilities

    Predictors of PFOA Levels in a Community Surrounding a Chemical Plant

    Get PDF
    BACKGROUND. Perfluorooctanoic acid (PFOA) is considered a probable human carcinogen by the U.S. Environmental Protection Agency. It does not exist in nature but has been used widely since World War II. It is present in the serum of most Americans at about 4-5 ng/mL, although the routes of exposure remain unknown. OBJECTIVES. We examined predictors of PFOA in mid-Ohio Valley residents living near a chemical plant that until recently released large quantities of PFOA into the environment, contaminating drinking water. METHODS. We studied 69,030 residents in six contaminated water districts who participated in a 2005-2006 survey involving a questionnaire and blood tests. Of these, 64,251 had complete data on PFOA and covariates. We also analyzed a subset (71%) for whom we had occupational history. We ran linear regression models to determine serum PFOA predictors. RESULTS. Mean PFOA serum level was 83.0 ng/mL (median, 28.2). The most important predictors were current (median for all districts, 38.4; highest district, 224.1) and past (median, 18.6) residence in contaminated water districts, and current (median, 147.8) and past (median, 74.9) employment at the chemical plant (R^2 model = 0.55). PFOA was higher for males, those consuming local vegetables, and those using well water rather than public water, and lower for those using bottled water. PFOA was higher at younger and older ages. CONCLUSIONS. PFOA levels in this population varied with distance of residence from the plant and employment at the plant. Effects of age and sex reflected prior findings. Effects of other demographic and lifestyle covariates were relatively weak

    Rate of Decline in Serum PFOA Concentrations after Granular Activated Carbon Filtration at Two Public Water Systems in Ohio and West Virginia

    Get PDF
    Drinking water in multiple water districts in the Mid-Ohio Valley has been contaminated with perfluorooctanoic acid (PFOA), which was released by a nearby DuPont chemical plant. Two highly contaminated water districts began granular activated carbon filtration in 2007.To determine the rate of decline in serum PFOA, and its corresponding half-life, during the first year after filtration.Up to six blood samples were collected from each of 200 participants from May 2007 until August 2008. The primary source of drinking water varied over time for some participants; our analyses were grouped according to water source at baseline in May-June 2007.For Lubeck Public Service District customers, the average decrease in serum PFOA concentrations between May-June 2007 and May-August 2008 was 32 ng/mL (26%) for those primarily consuming public water at home (n = 130), and 16 ng/mL (28%) for those primarily consuming bottled water at home (n = 17). For Little Hocking Water Association customers, the average decrease in serum PFOA concentrations between November-December 2007 and May-June 2008 was 39 ng/mL (11%) for consumers of public water (n = 39) and 28 ng/mL (20%) for consumers of bottled water (n = 11). The covariate-adjusted average rate of decrease in serum PFOA concentration after water filtration was 26% per year (95% confidence interval, 2528% per year).The observed data are consistent with first-order elimination and a median serum PFOA half-life of 2.3 years. Ongoing follow-up will lead to improved half-life estimation

    Global and regional burden of disease and injury in 2016 arising from occupational exposures: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Objectives This study provides an overview of the influence of occupational risk factors on the global burden of disease as estimated by the occupational component of the Global Burden of Disease (GBD) 2016 study. Methods The GBD 2016 study estimated the burden in terms of deaths and disability-adjusted life years (DALYs) arising from the effects of occupational risk factors (carcinogens; asthmagens; particulate matter, gases and fumes (PMGF); secondhand smoke (SHS); noise; ergonomic risk factors for low back pain; risk factors for injury). A population attributable fraction (PAF) approach was used for most risk factors. Results In 2016, globally, an estimated 1.53 (95% uncertainty interval 1.39–1.68) million deaths and 76.1 (66.3–86.3) million DALYs were attributable to the included occupational risk factors, accounting for 2.8% of deaths and 3.2% of DALYs from all causes. Most deaths were attributable to PMGF, carcinogens (particularly asbestos), injury risk factors and SHS. Most DALYs were attributable to injury risk factors and ergonomic exposures. Men and persons 55 years or older were most affected. PAFs ranged from 26.8% for low back pain from ergonomic risk factors and 19.6% for hearing loss from noise to 3.4% for carcinogens. DALYs per capita were highest in Oceania, Southeast Asia and Central sub-S aharan Africa. On a per capita basis, between 1990 and 2016 there was an overall decrease of about 31% in deaths and 25% in DALYs. Conclusions Occupational exposures continue to cause an important health burden worldwide, justifying the need for ongoing prevention and control initiatives.BPAQ acknowledges the institutional support of PRONABEC (National Program of Scholarship and Educational Loan), provided by the Peruvian Government; and the Judith Lumley Centre of La Trobe University. Till Winfried Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor Award, funded by the Federal Ministry of Education and Research, Germany. Félix Carvalho acknowledges UID/ MULTI/04378/2019 support with funding from FCT/MCTES through national funds. Eduarda Fernandes acknowledges UID/QUI/50006/2019 support with funding from FCT/MCTES through national funds. Mihajlo Jakovljevic acknowledges that the Serbian part of this GBD contribution was cofinanced through Grant OI 175 014 of the Ministry of Education, Science and Technological Development of the Republic of Serbia. Yun Jin Kim was supported by the Office of Research and Innovation, Xiamen University Malaysia. Walter Mendoza is currently a program analyst for Population and Development at the Peru Country Office of the United Nations Population Fund UNFPA, an institution which does not necessarily endorse this study. MMolokhia was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. Abdallah M Samy received a fellowship from the Egyptian Fulbright Mission Program (EFMP). SMSI is funded by a Senior Research Fellowship from the Institute for Physical Activity and Nutrition (IPAN), Deakin University. RT-­S was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. Paul Yip was supported by the Strategic Public Policy Research (SPPR) grant (HKU-12).publishedVersio
    corecore