17 research outputs found

    Serum from COVID-19 patients early in the pandemic shows limited evidence of cross-neutralization against variants of concern

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients

    CD81 fusion alters SARS-CoV-2 Spike trafficking.

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic caused the biggest public health crises in recent history. Many expect future coronavirus introductions into the human population. Hence, it is essential to understand the basic biology of these viruses. In natural infection, the SARS-CoV-2 Spike (S) glycoprotein is co-expressed with all other viral proteins, which modify cellular compartments to maximize virion assembly. By comparison, most of S is degraded when the protein is expressed in isolation, as in current molecular vaccines. To probe the maturation pathway of S, we redirected its maturation by fusing S to the tetraspanin protein CD81. CD81 is a defining constituent of extracellular vesicles (EVs) or exosomes. EVs are generated in large numbers by all cells, extruded into blood and lymph, and transfer cargo between cells and systemically (estimated 1012 EVs per mL plasma). EVs, like platelets, can be transfused between unrelated donors. When fusing the proline-stabilized form of strain Delta S into the flexible, large extracellular loop of CD81 rather than being degraded in the lysosome, S was extruded into EVs. CD81-S fusion containing EVs were produced in large numbers and could be isolated to high purity. Purified CD81::S EVs bound ACE2, and S displayed on individual EV was observed by cryogenic electron microscopy (EM). The CD81::S-fusion EVs were non-toxic and elicited an anti-S trimer and anti-RBD antibody response in mice. This report shows a design path to maximize viral glycoprotein assembly and release without relying on the co-expression of potentially pathogenic nonstructural viral proteins. IMPORTANCE: The severe acute respiratory syndrome coronavirus 2 pandemic caused the biggest public health crises in recent history. To understand the maturation pathway of S, we fused S to the tetraspanin protein CD81. The resulting molecule is secreted in extracellular vesicles and induces antibodies in mice. This may be a general design path for viral glycoprotein vaccines

    A CsrA-Binding, Trans-Acting sRNA of Coxiella burnetii is Necessary for Optimal Intracellular Growth and Vacuole Formation During Early Infection of Host Cells

    Get PDF
    Coxiella burnetii is an obligate intracellular gammaproteobacterium and zoonotic agent of Q fever. We previously identified 15 small non-coding RNAs (sRNAs) of C. burnetii. One of them, CbsR12 (Coxiella b urnetii small RNA 12), is highly transcribed during axenic growth and becomes more prominent during infection of cultured mammalian cells. Secondary structure predictions of CbsR12 revealed four putative CsrA-binding sites in stem loops with consensus AGGA/ANGGA motifs. We subsequently determined that CbsR12 binds to recombinant C. burnetii CsrA-2, but not CsrA-1, proteins in vitro. Moreover, through a combination of in vitro and cell culture assays, we identified several in-trans mRNA targets of CbsR12. Of these, we determined that CbsR12 binds and upregulates translation of carA transcripts coding for carbamoyl phosphate synthetase A; an enzyme that catalyzes the first step of pyrimidine biosynthesis. In addition, CbsR12 binds and downregulates translation of metK transcripts coding for S-adenosyl methionine (SAM) synthetase, a component of the methionine cycle. Furthermore, we found that CbsR12 binds to and downregulates the quantity of cvpD transcripts, coding for a type IVB effector protein, in mammalian cell culture. Finally, we found that CbsR12 is necessary for expansion of Coxiella-containing vacuoles (CCVs) and affects growth rates in a dose-dependent manner in the early phase of infecting THP-1 cells. This is the first characterization of a trans-acting sRNA of C. burnetii and first example of a bacterial sRNA that regulates both CarA and MetK synthesis. CbsR12 is one of only a few identified trans-acting sRNAs that interacts with CsrA

    VSV-Based Vaccines Reduce Virus Shedding and Viral Load in Hamsters Infected with SARS-CoV-2 Variants of Concern

    No full text
    The continued progression of the COVID-19 pandemic can partly be attributed to the ability of SARS-CoV-2 to mutate and introduce new viral variants. Some of these variants with the potential to spread quickly and conquer the globe are termed variants of concern (VOC). The existing vaccines implemented on a global scale are based on the ancestral strain, which has resulted in increased numbers of breakthrough infections as these VOC have emerged. It is imperative to show protection against VOC infection with newly developed vaccines. Previously, we evaluated two vesicular stomatitis virus (VSV)-based vaccines expressing the SARS-CoV-2 spike protein alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV) and demonstrated their fast-acting potential. Here, we prolonged the time to challenge; we vaccinated hamsters intranasally (IN) or intramuscularly 28 days prior to infection with three SARS-CoV-2 VOC—the Alpha, Beta, and Delta variants. IN vaccination with either the VSV-SARS2 or VSV-SARS2-EBOV resulted in the highest protective efficacy as demonstrated by decreased virus shedding and lung viral load of vaccinated hamsters. Histopathologic analysis of the lungs revealed the least amount of lung damage in the IN-vaccinated animals regardless of the challenge virus. This data demonstrates the ability of a VSV-based vaccine to not only protect from disease caused by SARS-CoV-2 VOC but also reduce viral shedding

    The Modern Research Data Portal: a design pattern for networked, data-intensive science.

    Get PDF
    We describe best practices for providing convenient, high-speed, secure access to large data via research data portals. We capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance data enclaves and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe how to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site, https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals

    Assessing cross-reactivity of Junín virus-directed neutralizing antibodies

    No full text
    Arenaviruses cause several viral hemorrhagic fevers endemic to Africa and South America. The respective causative agents are classified as biosafety level (BSL) 4 pathogens. Unlike for most other BSL4 agents, for the New World arenavirus Junín virus (JUNV) both a highly effective vaccination (Candid#1) and a post-exposure treatment, based on convalescent plasma transfer, are available. In particular, neutralizing antibodies (nAbs) represent a key protective determinant in JUNV infection, which is supported by the correlation between successful passive antibody therapy and the levels of nAbs administered. Unfortunately, comparable resources for the management of other closely related arenavirus infections are not available. Given the significant challenges inherent in studying BSL4 pathogens, our goal was to first assess the suitability of a JUNV transcription and replication-competent virus-like particle (trVLP) system for measuring virus neutralization under BSL1/2 conditions. Indeed, we could show that infection with JUNV trVLPs is glycoprotein (GP) dependent, that trVLP input has a direct correlation to reporter readout, and that these trVLPs can be neutralized by human serum with kinetics similar to those obtained using authentic virus. These properties make trVLPs suitable for use as a proxy for virus in neutralization assays. Using this platform we then evaluated the potential of JUNV nAbs to cross-neutralize entry mediated by GPs from other arenaviruses using JUNV (strain Romero)-based trVLPs bearing GPs either from other JUNV strains, other closely related New World arenaviruses (e.g. Tacaribe, Machupo, Sabiá), or the distantly related Lassa virus. While nAbs against the JUNV vaccine strain are also active against a range of other JUNV strains, they appear to have little or no capacity to neutralize other arenavirus species, suggesting that therapy with whole plasma directed against another species is unlikely to be successful and that the targeted development of cross-specific monoclonal antibody-based resources is likely needed. Such efforts will be supported by the availability of this BSL1/2 screening platform which provides a rapid and easy means to characterize the potency and reactivity of anti-arenavirus neutralizing antibodies against a range of arenavirus species.Fil: Leske, Anne. Friedrich Loeffler Institut; AlemaniaFil: Waßmann, Irke. Friedrich Loeffler Institut; AlemaniaFil: Schnepel, Kevin. Friedrich Loeffler Institut; AlemaniaFil: Shifflett, Kyle. National Institutes of Health; Estados UnidosFil: Holzerland, Julia. Friedrich Loeffler Institut; AlemaniaFil: Bostedt, Linus. Friedrich Loeffler Institut; AlemaniaFil: Bohn, Patrick. Friedrich Loeffler Institut; AlemaniaFil: Mettenleiter, Thomas C.. Friedrich Loeffler Institut; AlemaniaFil: Briggiler, Ana Maria. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Brignone, Julia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Enria, Delia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Cordo, Sandra Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Hoenen, Thomas. Friedrich Loeffler Institut; Alemania. National Institutes of Health; Estados UnidosFil: Groseth, Allison. Friedrich Loeffler Institut; Alemania. National Institutes of Health; Estados Unido

    Large‐scale heparin‐based bind‐and‐elute chromatography identifies two biologically distinct populations of extracellular vesicles

    No full text
    ABSTRACT Purifying extracellular vesicles (EVs) has been challenging because EVs are heterogeneous in cargo yet share similar sizes and densities. Most surface marker‐based affinity separation methods are limited to research or diagnostic scales. We report that heparin chromatography can separate purified EVs into two distinct subpopulations as ascertained by MS/MS: a non‐heparin‐binding (NHB) fraction that contains classical EV markers such as tetraspanins and a heparin‐binding (HB) fraction enriched in fibronectins and histones. Both fractions were similarly fusogenic but induced different transcriptional responses in endothelial cells. While EVs that were purified by conventional, non‐affinity methods alone induced ERK1/2 phosphorylation and Ki67, the NHB fraction did not. This result suggests heparin chromatography as an additional novel fractionation step that is inherently scalable, does not lead to loss of material, and separates inflammatory and pyrogenic EVs from unreactive EVs, which will improve clinical applications
    corecore